• Safri Gunawan Universitas Negeri Medan
  • Banu Nursanni Universitas Negeri Medan
  • Sapitri Januariyansah Universitas Negeri Medan
  • Suprapto Suprapto Universitas Negeri Medan



Coconut Shell, Durian Fruit Peel, DSC, Thermal Analyze


The production of coconut and durian means that it will produce a lot of waste from its shell. Indonesia is a country that produces a lot of them. The coconut shell (CS) and durian fruit peel (DFP) can be converted to briquette as new fuel from biomass.  The objective of this research is to obtain the calorific briquette properties of CS and DFP using Differential Scanning Calorimetry (DSC).  The material composition consist of 10 % and 15 % of starch for each CS and DFP. Thermal treatment was carried out in the temperature range of 28 °C to 600 °C at 5.4 °C/min. The addition of starch causes the heating temperature since it has thermoplastic properties. Additionally, it is difficult to burn and carries a lot of water so that the heat generated is used to evaporate the water first of all in the briquettes. The recommended material is CS with 10 % mass of starch. The optimum temperature reached was 578.97 °C with an enthalpy value of 0.42 J/g.


U.S. EIA, “Country analysis executive summary: India,” U.S. Energy Inf. Adm. Indep. Stat. Anal., p. 9, 2021, [Online]. Available:

BADAN PUSAT STATISTIK KABUPATEN DELI SERDANG, “Luas Tanaman dan Rata-rata Produksi Kelapa Tanaman Perkebunan Rakyat Menurut Kecamatan 2015,” Badan Pusat Statistik Kabupaten Deli Serdang, 2015. tanaman-dan-rata-rata-produksi-kelapa-tanaman-perkebunan-rakyat-menurut-kecamatan.html (accessed October. 20. 2021).

DALIMUNTHE, Y.K., KASMUNGIN, S., SUGIARTO, E., SUGIARTI, L., LAGRAMA, A., “Making Briquettes From Waste of Coconut Shell and Peanut Shell”, Indonesian Journal of Urban and Environmental Technology, vol. 4, no. 2, pp. 196–209, 2021.

NYAKUMA, B. B., JOHARI, A., AHMAD, A., TUAN, T. A., “Comparative analysis of the calorific fuel properties of Empty Fruit Bunch Fiber and Briquette”, Energy Procedia, vol. 52, pp. 466–473, 2014, doi: 10.1016/j.egypro.2014.07.099.

FAISAL, S. K., MAZENAN, P. N., “Studies of Carbonization Process on the Production of Durian Peel Biobriquettes with Mixed Biomass Coconut and Palm Shells”, in IOP Conference Series: Materials Science and Engineering, 2018, vol. 316, no. 1, doi: 10.1088/1757-899X/316/1/012021.

SINGH, R., SETIAWAN, A.D., "Biomass energy policies and strategies: Harvesting potential in India and Indonesia", Renewable and Sustainable Energy Reviews, v. 22 pp. 332-345, Jun 2013.

GAONA, D., URRESTA, E., MARÍNEZ, J., GUERRÓN, G., “Medium-temperature phase-change materials thermal characterization by the T-History method and differential scanning calorimetry”, Exp. Heat Transf., vol. 30, no. 5, pp. 463–474, 2017, doi: 10.1080/08916152.2017.1286413.

BITTER, H., LACKNER, S., “Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC)”, Chem. Eng. J., vol. 423, p. 129941, 2021, doi: 10.1016/j.cej.2021.129941.

SUN, X., LEE, K. O., MEDINA, M. A., CHU, Y., LI, C., “Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis”, Phase Transitions, vol. 91, no. 6, pp. 667–680, 2018, doi: 10.1080/01411594.2018.1469019.

CHOU, M. I. M., “Fly Ash fly ash”, Encycl. Sustain. Sci. Technol., vol. 7, no. 1, pp. 3820–3843, 2012, doi: 10.1007/978-1-4419-0851-3_121.

MAJEWSKY, M., BITTER, H., EICHE, E., HORN, H., “Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC)”, Sci. Total Environ., vol. 568, pp. 507–511, 2016, doi: 10.1016/j.scitotenv.2016.06.017.

SAJIDAH, H. B. N., “Review: Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) Scanning Electron Microscopy (SEM) dan Transmission Electron Microscopy (TEM) Untuk Karakterisasi Serbuk Ba1-XSRxTIO3”, Dep. Kim. Inst. Teknol. Sepuluh Nop., no. June, pp. 1–10, 2017.

BITTER, H., LACKNER, S., “First quantification of semi-crystalline microplastics in industrial wastewaters”, Chemosphere, vol. 258, p. 127388, 2020, doi: 10.1016/j.chemosphere.2020.127388.

SPLINTER, R., VAN HERWAARDEN, A. W., IERVOLINO, E., VANDEN POEL, G., ISTRATE, D., SARRO, P. M., “Analyzing protein denaturation using fast differential scanning calorimetry”, Procedia Eng., vol. 47, pp. 140–143, 2012, doi: 10.1016/j.proeng.2012.09.104.

FROLOV, I. N., OKHOTNIKOVA, E. S., ZIGANSHIN, M. A., YUSUPOVA, T. N., FIRSIN, A. A., “The study of bitumen by differential scanning calorimetry: The interpretation of thermal effects”, Pet. Sci. Technol., vol. 37, no. 4, pp. 417–424, 2019, doi: 10.1080/10916466.2018.1550499.

NIKOLAEVA, L.A, SOLOVEV, T.M., "Investigation of Thermal Properties of Fuel Briquettes by DSC Method", In: IOP Conf. Ser.: Earth Environ. Sci., Vladivostok, 2021.

NUGRAHA, A., WIDODO, A., WAHYUDI, S., “Pengaruh Tekanan Pembriketan dan Persentase Briket Campuran Gambut dan Arang Pelepah Daun Kelapa Sawit Terhadap Karakteristik Pembakaran Briket”, J. Rekayasa Mesin, v. 8, n. 1, 2017.

MUREDDU, M., DESSI, F., et al., "Air-and oxygen-blown characterization of coal and biomass by thermogravimetric analysis", Fuel, v. 212, pp. 626-637, Jan 2018.

HE, F., YI, W., BAI, X., "Investigation on caloric requirement of biomass pyrolysis using TG–DSC analyzer", v. 47, pp. 2461-2469, Sept. 2006.

MUTLUR, S., "Thermal analysis of composites using DSC", In: KESSLER, M.R., (eds), Advanced Topics in Characterization of Composites, chapter 2, Trafford Publishing, 2004.

GAISFORD, S., KETT, V., HAINES, P., "Principles of thermal analysis and calorimetry, Ed 2th",, Royal Society of Chemistry, 2016.

NYAKUMA, B. B., JOHARI, A., AHMAD, A., TUAN, T. A., “Comparative analysis of the calorific fuel properties of Empty Fruit Bunch Fiber and Briquette”, Energy Procedia, vol. 52, pp. 466–473, 2014, doi: 10.1016/j.egypro.2014.07.099.

AZETA, O., AYENI, A.O., AGBOOLA, O., ELEHINAFE, F.B., “A review on the sustainable energy generation from the pyrolysis of coconut biomass”, Sci. African, v. 13, Sept 2021.

SIENGCHUM, T., ISENBERG, M., CHUANG, S.S.C., "Fast pyrolysis of coconut biomass–an FTIR study", Fuel, v. 105, pp. 559–565, Mar 2013.

MANSHOR, R.M., ANUAR, H., WAN NAZRI, W.B., FITRIE, M.I.A., "Preparation and characterization of physical properties of durian skin fibers biocomposite", Advanced Materials Research, v. 576, pp. 212-215, Oct 2012.

LUBIS, R., SARAGIH, S.W., WIRJOSENTONO, B., EDDYANTO, E., "Characterization of durian rinds fiber (Durio zubinthinus, murr) from North Sumatera", In: The 3rd International Seminar on Chemistry: Green Chemistry and Its Role for Sustainability, pp. 020069-1-8, Surabaya, July. 2018.

A. BAMPENRAT, A. BOONKITKOSON, T. SEANGWATTANA, P. SUTTIARPORN, AND H. SUKKATHANYAWAT, “Kinetic Analysis of Durian Rind Pyrolysis Using Model-Free Method,” In: IOP Conf. Ser. Earth Environ. Sci., v. 586, n. 1, 2020, doi: 10.1088/1755-1315/586/1/012002.

NOER, s., PRATIWI, R. D., GRESINTA, E., “Pemanfaatan Kulit Durian Sebagai Adsorben”, Faktor Exacta, vol. 8, no. 1, pp. 75–78, 2015.

RIANTO, W., “Analisis Thermal Nilai Kalor Briket Ampas Batang Tebu Dan Serbuk Gergaji”, Rekayasa Mesin, vol. 10, no. 1, pp. 9–15, 2019.