Pengaruh Lingkungan Las terhadap Kekuatan Impak Sambungan Las Aluminum AA1100

Authors

  • Ilham Habibi Universitas Muhammadiyah Magelang
  • Nurul Muhayat Universitas Sebelas Maret
  • Triyono Triyono (SCOPUS ID: 57194037176; h-index: 5), Universitas Sebelas Maret, Indonesia

DOI:

https://doi.org/10.21776/ub.jrm.2021.012.03.12

Keywords:

Aluminum, Welding, Impact Strength, Air Flow Velocity, Humidity, Temperature

Abstract

Due to lightweight and strong, aluminum is often applied to the car bodies of an automotive and high-speed train. Welding is the main manufacturing process for these structures. Environmental conditions in welding, especially airflow velocity, humidity, and temperature, significantly affect the impact property of aluminum alloy weld joints. In this work, the welding environment is controlled by creating an insulating welding room where the airflow velocity, humidity, and temperature of the welding environment can be adjusted to obtain an ideal welding environment. The variation of welding environment conditions used was the temperature of 17℃, 22℃, and 27℃; relative humidity of 64%, 68%, and 72% and airflow velocity of 1.1m/s, 1.6m/s, and 2.1m/s. The results showed that the lower the welding environment temperature, the more toughness decreased. The lower the flow rate and the relative humidity of the surrounding air, the tougher it is. Air humidity contains a lot of water vapor (hydrogen) which can cause porosity. The low temperature of the welding chamber results in a shorter freezing time of the weld metal, resulting in cracking and porosity in the weld metal. The ambient airflow velocity interferes with the shielding gas function so that the outside air can be contaminated in the weld metal. The best welding environmental conditions will be achieved if the airflow velocity is below 1.1 m / s, the relative humidity is below 64% and the ambient temperature is 27℃.

References

RAHARJO, R., HAMIDI, N., WIDODO, T.D., BINTARTO, R., and HABIBULFALAH, E., “Pengaruh clamping frame kayu meranti dan astm a36 pada friction spot joining al 1100 dan pvcâ€, Rekayasa Mesin, v. 11, no 2, pp. 257–265, 2020. doi: https://doi.org/10.21776/ub.jrm.2020.011.02.12.

SCHUBERT, E., KLASSEN, M., ZERNER, I., WALZ, C., AND SEPOLD, G., “Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industryâ€, J. Mater. Process. Technol., v. 115, n. 1, pp. 2–8, 2001. doi: 10.1016/S0924-0136(01)00756-7.

WENLONG, S., XIAOKAI, C., and LU, W., “Analysis of energy saving and emission reduction of vehicles using light weight materialsâ€, Energy Procedia, v. 88, n. 1, pp. 889–893, 2016. doi: 10.1016/j.egypro.2016.06.106.

HOSSAIN, M.N., AHMED, T., EHSAN, M., MAHBOOB, M., and MAMUN, M., “Performance evaluation of a light-weight passenger vehicle using regular octane and bio-fuelâ€, Procedia Eng., v. 90, n. 1, pp. 605–610, 2014. doi: 10.1016/j.proeng.2014.11.779.

DOSHI, S.J., GOHIL, A.V., MEHTA, N., and VAGHASIYA, S., “Challenges in Fusion Welding of Al alloy for Body in Whiteâ€, Mater. Today Proc., v. 5, n. 2, pp. 6370–6375, 2018. doi: 10.1016/j.matpr.2017.12.247.

PRAVEEN, P., and YARLAGADDA, P.K.D.V., “Meeting challenges in welding of aluminum alloys through pulse gas metal arc weldingâ€, J. Mater. Process. Technol., v. 164–165, pp. 1106–1112. 2005, doi: 10.1016/j.jmatprotec.2005.02.224.

SOKOLUK, M., CAO, C., PAN, S., and LI, X., “Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075,†Nat. Commun., vol. 10, no. 1, pp. 1–8, 2019, doi: 10.1038/s41467-018-07989-y.

HANYANG, L., “Training of argon arc welding process for tube aluminum busbar melting pole in UHV power stationâ€, MATEC Web Conf, vol. 175, no. 03010, pp. 1–4, 2018. doi: https://doi.org/10.1051/matecconf/201817503010.

CAMPANA, G., ASCARI, A., FORTUNATO, A., and TANI, G., “Hybrid laser-MIG welding of aluminum alloys: The influence of shielding gases,†Appl. Surf. Sci., v. 255, n. 10, pp. 5588–5590, 2009. doi: 10.1016/j.apsusc.2008.07.169.

NADYA, M., IRAWAN, Y.S., and CHOIRON, M.A., “Pengaruh double chamfer terhadap distribusi suhu dan daerah Zpl pada sambungan las gesek Al6061 dengan simulasi komputerâ€, Rekayasa Mesin, v. 11, n. 2, pp. 433–445, 2021. doi: https://doi.org/10.21776/ub.jrm.2021.012.02.20.

PICKIN C. G., and YOUNG, K., “Evaluation of cold metal transfer ( CMT ) process for welding aluminium alloyâ€, Sci. Technol. Weld. Join., v. 11, n. 5, pp. 583–586, 2006. doi: 10.1179/174329306X120886.

CARLSON, K. D., LIN, Z., and BECKERMANN, C., “Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloysâ€, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., v. 38, n. 4, pp. 541–555, 2007. doi: 10.1007/s11663-006-9013-2.

SETYAWAN, P.E., IRAWAN, Y.S., and SUPRAPTO, W., “Kekuatan Tarik Dan Porositas Hasil Sambungan Las Gesek Aluminium 6061 Dengan Berbagai Suhu Agingâ€, Rekayasa Mesin, v. 5, n. 2, pp.141-148, 2014. doi: 10.21776/ub.jrm.

HAN Q., and VISWANATHAN, S., “Hydrogen evolution during directional solidification and its effect on porosity formation in aluminum alloys,†Metall. Mater. Trans. A Phys. Metall. Mater. Sci., v. 33, n. 7, pp. 2067–2072, 2002. doi: 10.1007/s11661-002-0038-0.

ZHANG, Q., WANG, T., YAO, Z., and ZHU, M., “Modeling of hydrogen porosity formation during solidification of dendrites and irregular eutectics in Al–Si alloysâ€, Materialia, v. 4, September, pp. 211–220, 2018, doi: 10.1016/j.mtla.2018.09.030.

PEQUET, C., GREMAUD, M., and RAPPAZ, M., “Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: Applications to aluminum alloysâ€, Metall. Mater. Trans. A, v. 33, pp. 1–11, 2002. doi: 10.1007/s11661-002-0041-5.

ZHANG, Y. M., PAN, C., and MALE, A. T., “Improved Microstructure and Properties of 6061 Aluminum Alloy Weldments Using a Double-Sided Arc Welding Process,†Metall. Mater. Trans. A, v. 31, n. October, pp. 2537–2543, 2000. doi: https://doi.org/10.1007/s11661-000-0198-8.

ZHENG, W., HE, Y., YANG, J., and GAO, Z., “Hydrogen diffusion mechanism of the single-pass welded joint in welding considering the phase transformation effectâ€, J. Manuf. Process., v. 36, n. October, pp. 126–137, 2018. doi: 10.1016/j.jmapro.2018.09.026.

VISHNYAKOV, V. I., KIRO, S. A., OPRYA, M. V., and ENNAN, A. A., “Effect of shielding gas temperature on the welding fume particle formation: Theoretical modelâ€, J. Aerosol Sci., v. 124, pp. 112–121, 2018. doi: 10.1016/j.jaerosci.2018.07.006.

ZHU, C., SUN, L., GAO, W., LI, G., and CUI, J., “The effect of temperature on microstructure and mechanical properties of Al / Mg lap joints manufactured by magnetic pulse welding,†Integr. Med. Res., v. 8, n. 3, pp. 3270–3280, 2019. doi: 10.1016/j.jmrt.2019.05.017.

GOU, G., ZHANG, M., CHEN, H., CHEN, J., LI, P., and YANG, Y. P., “Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trainsâ€, Mater. Des., v. 85, pp. 309–317, 2015. doi: 10.1016/j.matdes.2015.06.177.

HAN, Y. et al., “Influence of hydrogen embrittlement on impact property and microstructural characteristics in aluminum alloy weldâ€, Vacuum, v. 172, November 2019. pp. 1–8, 2020, doi: 10.1016/j.vacuum.2019.109073.

KIRCHHEIM, R., “Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical backgroundâ€, Acta Mater., v. 55, n. 15, pp. 5129–5138, 2007. doi: 10.1016/j.actamat.2007.05.047.

LU G., and KAXIRAS, E., “Hydrogen embrittlement of aluminum: The crucial role of vacanciesâ€, Phys. Rev. Lett., v. 94, n. 15, pp. 1–4, 2005. doi: 10.1103/PhysRevLett.94.155501.

KUTSUNA, M., and YAN, Q., “Study on porosity formation in laser welds of aluminium alloys (Report 2). Mechanism of porosity formation by hydrogen and magnetism,†Weld. Int., v. 13, n. 8, pp. 597–611, 1999. doi: 10.1080/09507119909447420.

TU J. F., and PALEOCRASSAS, A. G., “Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fiber laser weldingâ€, J. Mater. Process. Technol., v. 211, pp. 95–102, 2011. doi: 10.1016/j.jmatprotec.2010.09.001.

DA SILVA C. L. M., and SCOTTI, A., “The influence of double pulse on porosity formation in aluminum GMAWâ€, J. Mater. Process. Technol., v. 171, n. 3, pp. 366–372, 2006, doi: 10.1016/j.jmatprotec.2005.07.008.

YAN, B. A. I., HONG-MING, G. A. O., LIN, W. U., ZHAO-HUI, M. A., and NENG, C. A. O., “Influence of plasma-MIG welding parameters on aluminum weld porosity by orthogonal testâ€, Trans. Nonferrous Met. Soc. China, v. 20, n. 8, pp. 1392–1396, 2009, doi: 10.1016/S1003-6326(09)60310-1.

WANG, Q., LIU, X. S., WANG, P., XIONG, X., and FANG, H. Y., “Numerical simulation of residual stress in 10Ni5CrMoV steel weldmentsâ€, J. Mater. Process. Technol., v. 240, pp. 77–86, 2017. doi: 10.1016/j.jmatprotec.2016.09.011.

ZUBAIRUDDIN, M., ALBERT, S. K., VASUDEVAN, M., MAHADEVAN, S., CHAUDHARI, V., and SURI, V. K., “Numerical simulation of multi-pass GTA welding of grade 91 steelâ€, J. Manuf. Process., v. 27, pp. 87–97, 2017. doi: 10.1016/j.jmapro.2017.04.031.

MVOLA B., and KAH, P., “Effects of shielding gas control : welded joint properties in GMAW process optimizationâ€, Int. J. Adv. Manuf. Technol., v. 88, pp. 2369–2387, 2017. doi: 10.1007/s00170-016-8936-2.

Downloads

Published

2022-01-08

Issue

Section

Articles