Effect of the Substrate Surface Profile on the Bonding Strength of the Aluminum Thermal Sprayed on the Low Carbon Steel


  • Nurul Muhayat Universitas Sebelas Maret
  • Ilham Habibi Universitas Sebelas Maret
  • Teguh Triyono Universitas Sebelas Maret
  • Sukmaji Indro Cahyono Universitas Sebelas Maret
  • Eko Surojo Universitas Sebelas Maret
  • Triyono Triyono (SCOPUS ID: 57194037176; h-index: 4), Universitas Sebelas Maret, Indonesia




Aluminum Thermal Sprayed, Surface Profile, Pull-Off, Bonding Strength, Buckling Strength


The contact surface of thermal spray significantly affected bonding strength and coating elasticity. This work aimed to evaluate the effects of contact surface conditions characterised by substrate surface profile and spray pressure on the bonding and buckling strength of aluminium thermal sprayed on the low-carbon steel substrate. The SS400 low-carbon steel substrate was profiled using the milling process to form the V, small V, U, and flat profiles that were subsequently roughed by employing the sandblasting process. A coating comprising 99% aluminium was sprayed onto the substrate surface with different spraying pressures of 3.5, 4.5, and 5.5 bar. Pull-off and buckling tests were performed for determining thermal spray characteristics. The results of this work showed that the optimal bonding strength of the coating was obtained for the thermal spray specimen that had a flat substrate surface, and the spraying pressure was set to 5.5 bar. Generally, low spraying pressure lead to be low bonding strength and vice versa. Profiled surface was not profitable on the mechanic properties of thermal spray bonding.


S. METCO, Material Product Flyer Electric Arc and Combustion Wire Product Portfolio, (2008) 1–4.

S.R. LAMPMAN, W.W. SCOTT, E. MARQUARD, H. LAMPMAN, B. MUSGROVE, K. DRAGOLICH, M. SCHAEFER, ASM Handbook Volume 9 Metallography and Microstructures, ASM Handb. 9 (2004). www.asminternational.org.

F. OTSUBO, H. ERA, AND K. KISHITAKE, Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron, J Therm Spray Tech., Vol. 9, 107–113 (2000). https://doi.org/10.1361/105996300770350131.

L. LI, X.Y. WANG, G. WEI, A. VAIDYA, H. ZHANG, S. SAMPATH, Substrate melting during thermal spray splat quenching, Thin Solid Films, Vol. 468, No. 1-2 (2004) 113–119. doi:10.1016/j.tsf.2004.05.073.

M. BELOTSERKOVSKY, A. YELISTRATOV, A. BYELI, V. KUKAREKO, Steel thermal sprayed coatings: superficial hardening by Nitrogen ion implantation, Welding Journal, Vol. 88 (2009).

D.P. CHAKRAVARTHY, D.N. BARVE, D.S. PATIL, P. MISHRA, C.S.R. PRASAD, R.K. ROUT, Development and characterization of single wire-arc-plasma sprayed coatings of nickel on carbon blocks and alumina tube substrates, Surf. Coatings Technol. Vol. 202, 325–330 (2007). doi:10.1016/j.surfcoat.2007.05.053.

D. ZOIS, A. LEKATOU, M. VARDAVOULIAS, Preparation and characterization of highly amorphous HVOF stainless steel coatings, J. Alloys Compd. Vol. 504 (2010) S283–S287. doi:10.1016/j.jallcom.2010.02.062.

G. JANDIN, H. LIAO, Z.Q. FENG, C. CODDET, Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings, Mater. Sci. Eng. A. Vol. 349 (2003) 298–305. doi:10.1016/S0921-5093(02)00767-0.

Y. PENG, C. ZHANG, H. ZHOU, L. LIU, On the bonding strength in thermally sprayed Fe-based amorphous coatings, Surf. Coatings Technol. Vol. 218 (2013) 17–22. doi:10.1016/j.surfcoat.2012.12.018.

G. J. YANG, C. J. LI, Y. Y. WANG, Phase formation of nano-TiO2 particles during flame spraying with liquid feedstock, J. Therm. Spray Technol. Vol. 14 (2005) 480–486. doi:10.1361/105996305X76487.

J. KAWAKITA, T. FUKUSHIMA, S. KURODA, T. KODAMA, Corrosion behaviour of HVOF sprayed SUS316L stainless steel in seawater, Corros. Sci. Vol. 44 (2002) 2561–2581. doi:10.1016/S0010-938X(02)00030-6.

M.M. VERDIAN, K. RAEISSI, M. SALEHI, Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution, Corros. Sci. Vol. 52 (2010) 1052–1059. doi:10.1016/j.corsci.2009.11.034.

P. H. GAO, S. T. CAO, J. P. LI, Z. YANG, Y. C. GUO, Y. R. WANG, High temperature oxidation resistance of M42C stainless steel coatings deposited on the surface of cast iron through atmospheric plasma spraying, J. Alloys Compd. Vol. 684 (2016) 188–194. doi:10.1016/j.jallcom.2016.05.181.

R. WANG, D. SONG, W. LIU, X. HE, Effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coating deposited onto carbon fiber reinforced epoxy composites, Appl. Surf. Sci. Vol. 257 (2010) 203–209. doi:10.1016/j.apsusc.2010.06.065.

M.K. HEDGES, A.P. NEWBERY, P.S. GRANT, Characterisation of electric arc spray formed Ni superalloy IN718, Mater. Sci. Eng. A. Vol. 326 (2002) 79–91. doi:10.1016/S0921-5093(01)01431-9.

M.S.A. RAHIM, N. H. SAAD, H.L. BAKIR, Plasma spray ceramic coating and measurement of developed coating behaviour, International Journal of Precision Technology, Vol 1 No. 2 (2009) 163–172. doi: 10.1504/IJPTECH.2009.026375

Z. NURISNA, T. TRIYONO, N. MUHAYAT, A.T. WIJAYANTA, Effect of layer thickness on the properties of nickel Thermal sprayed steel, AIP Conf. Proc. 1717 (2016). doi:10.1063/1.4943455.

M.P. KANOUFF, R. A. NEISER JR, T.J. ROEMER, Surface Roughness of Thermal spray Coatings Made with Off-Normal Spray Angles, J. Therm. Spray Technol. Vol. 7 (1998) 219–228. doi:10.1361/105996398770350963.

L. BAIAMONTE, F. MARRA, S. GAZZOLA, P. GIOVANETTO, C. BARTULI, T. VALENTE, G. PULCI, Surface and coatings technology thermal sprayed coatings for hot corrosion protection of exhaust valves in naval diesel engines, Surf. Coat. Technol. Vol. 295 (2016) 78–87. doi:10.1016/j.surfcoat.2015.10.072.

S. COSTIL, H. LIAO, O. CHRETIEN, A. LOREDO, A. GAMMOUDI, M. VERDIER, C. CODDET, Influence of laser surface cleaning combined with substrate laser preheating on Thermal spray coating adhesion, Lasers Eng. Vol. 15 (2005) 325–345.

S. DANOUNI, A. ABDELLAH EL-HADJ, M. ZIRARI, M. BELHARIZI, A thermo-mechanical analysis of a particle impact during thermal spraying, Appl. Surf. Sci. Vol. 371 (2016) 213–223. doi:10.1016/j.apsusc.2016.02.226.

C. ZHANG, H. ZHOU, L. LIU, Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance, Acta Mater. Vol. 72 (2014) 239–251. doi:10.1016/j.actamat.2014.03.047.

A. EDRISY, T. PERRY, Y. CHENG, A. ALPAS, Wear of thermal spray deposited low carbon steel coatings on aluminum alloys, Wear Vol. 251 (2001) 1023–1033. doi:10.1016/S0043-1648(01)00718-9.

Y. C. YANG, E. CHANG, Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate, Biomaterials Vol. 22 (2001) 1827–1836. doi:10.1016/S0142-9612(00)00364-1.

A.S.M. ANG, N. SANPO, M.L. SESSO, S.Y. KIM, C.C. BERNDT, Thermal spray maps: Material genomics of processing technologies, J. Therm. Spray Technol. Vol. 22 (2013) 1170–1183. doi:10.1007/s11666-013-9970-3.

K.T. OH, Y.S. PARK, Plasma-sprayed coating of hydroxylapatite on super austenitic stainless steels, Surf. Coatings Technol. Vol. 110 (1998) 4–12. doi:10.1016/S0257-8972(98)00537-4.

M.A. MULERO, J. ZAPATA, R. VILAR, V. MARTÃNEZ, R. GADOW, Automated image inspection system to quantify thermal spray splat morphology, Surf. Coatings Technol. Vol. 278 (2015) 1–11. doi:10.1016/j.surfcoat.2015.07.065.

L. PAWLOWSKI, The Science and engineering of thermal spray coatings, Wiley; 2nd edition, 2008. doi:10.1002/9780470754085.

S. SAMPATH, J. MATEJICEK, Intrinsic residual stresses in single splats produced by thermal spray, Acta Mater. Vol. 49 (2001).

R.S.C. PAREDES, S.C. AMICO, A.S.C.M. D’OLIVEIRA, The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by Thermal spraying, Surf. Coatings Technol. Vol. 200 (2006) 3049–3055. doi:10.1016/j.surfcoat.2005.02.200.

V. V SOBOLEV, J.M. GUILEMANY, The formation of coating shrinkage porosity in the process of thermal spraying, J. Mater. Process. Technol. Vol. 58 (1996).

M. XUE, S. CHANDRA, J. MOSTAGHIMI, Investigation of splat curling up in thermal spray coatings, J. Therm. Spray Technol. Vol. 15 (2006). doi:10.1361/105996306X147315.

N. NAYEBPASHAEE, S.H. SEYEDEIN, M.R. ABOUTALEBI, H. SARPOOLAKY, S.M.M. HADAVI, Finite element simulation of residual stress and failure mechanism in plasma sprayed thermal barrier coatings using actual microstructure as the representative volume, Surf. Coatings Technol. Vol. 291 (2016) 103–114. doi:10.1016/j.surfcoat.2016.02.028.

R.T.R. MCGRANN, D.J. GREVING, J.R. SHADLEY, E.F. RYBICKI, T.L. KRUECKE, B.E. BODGER, The effect of coating residual stress on the fatigue life of thermal spray-coated steel and aluminum, Surf. Coatings Technol. Vol. 108–109 (1998) 59–64. doi:10.1016/S0257-8972(98)00665-3.

T.W. CLYNE, S.C. GILL, Residual Stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work, J. Therm. Spray Technol. Vol. 5 (1996) 401. doi:10.1007/BF02645271.

C. ZHANG, H. LI, M.Q. LI, Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components, Appl. Surf. Sci. Vol. 371 (2016) 407–414. doi:10.1016/j.apsusc.2016.03.039.

H. LI, C. ZHANG, H. BIN LIU, M.Q. LI, Bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy, Trans. Nonferrous Met. Soc. China (English Ed.) Vol. 25 (2015) 80–87. doi:10.1016/S1003-6326(15)63581-6.

B. WANG, F. ZHANG, S.L. CHEN, S. KOU, Computational simulation of diffusion process in multicomponent and multiphase systems in diffusion bonding, Sci. Technol. Weld. Join. Vol. 18 (2013) 451–457. doi:10.1179/1362171813Y.0000000121.

L. ZHUANG, Y. LEI, S. CHEN, L. HU, Q. MENG, Microstructure and mechanical properties of AlMgB14-TiB2associated with metals prepared by the field-assisted diffusion bonding sintering process, Appl. Surf. Sci. Vol. 328 (2015) 125–132. doi:10.1016/j.apsusc.2014.11.127.

ASM International®, Handbook of Thermal Spray Technology, Materials Park, USA, 2004.

B. WIELAGE, H. POKHMURSKA, M. STUDENT, V. GVOZDECKII, T. STUPNYCKYJ, V. POKHMURSKII, Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures, Surf. Coatings Technol. Vol. 220 (2013) 27–35. doi:10.1016/j.surfcoat.2012.12.013.

ASM Handbook, Volume 2B: Properties and Selection of Aluminum Alloys, ASM Digital Library.