• Dedik Romahadi Universitas Mercu Buana
  • Dafit Feriyanto Universitas Mercu Buana
  • Wiwit Suprihatiningsih Universitas Mercu Buana
  • Wahyu Nur Setiawan Universitas Mercu Buana



Vibration analysis, artificial neural networks, motor, spectrum, fault diagnosis.


Expert system design is an effective and sophisticated way of diagnosing a fault in a 12 kW DC Motor. This study aims to design an ANN system to determine damage to the motor. The research method uses spectrum data from the vibration analyzer which is collected based on different types of damage. The training data patterns from the spectrum characteristics to be used in the system, the goal is that the systems can recognize the patterns that have been made. The training data patterns that have been successfully recognized by the system are then tested. The results of training and ANN testing are quite good, with the greatest Cross-Entropy value of 9.94, having 0% error value, the largest Mean Square Error value 8.33e-6 and the smallest regression 0.998. A testing of 8 new spectrums resulted in accurate predictions.


D. SURYADI AND M. D. PRATAMA, “Desain dan pembuatan alat monitoring kerusakan mesin berdasarkan level getaran,†Rekayasa Mesin, vol. 11, pp. 21–29, 2020, doi:

D. ROMAHADI, A. A. LUTHFIE, AND L. B. DESTI DORION, “Detecting classifier-coal mill damage using a signal vibration analysis,†SINERGI, vol. 23, no. 3, p. 175, Sep. 2019, doi: 10.22441/sinergi.2019.3.001.

Z. CAO, Y. XU, W. GONG, Y. CAI, AND Z. YUAN, “Probabilistic analysis of environmental vibrations induced by high-speed trains,†Soil Dyn. Earthq. Eng., vol. 139, p. 106343, Dec. 2020, doi: 10.1016/j.soildyn.2020.106343.

L. TIAN, T. YE, AND G. JIN, “Vibration analysis of combined conical-cylindrical shells based on the dynamic stiffness method,†Thin-Walled Struct., p. 107260, Nov. 2020, doi: 10.1016/j.tws.2020.107260.

A. A. LUTHFIE, D. ROMAHADI, H. GHUFRON, AND S. D. MURTYAS, “Numerical simulation on rear spoiler angle of mini mpv car for conducting stability and safety,†SINERGI, vol. 24, pp. 23–28, 2020, doi:

F. W. DA S. TUCKMANTEL AND K. L. CAVALCA, “Vibration signatures of a rotor-coupling-bearing system under angular misalignment,†Mech. Mach. Theory, vol. 133, pp. 559–583, Mar. 2019, doi: 10.1016/j.mechmachtheory.2018.12.014.

B. XIANG AND W. ON WONG, “Vibration characteristics analysis of magnetically suspended rotor in flywheel energy storage system,†J. Sound Vib., vol. 444, pp. 235–247, Mar. 2019, doi: 10.1016/J.JSV.2018.12.037.

D. F. PLÖGER, P. ZECH, AND S. RINDERKNECHT, “Vibration signature analysis of commodity planetary gearboxes,†Mech. Syst. Signal Process., vol. 119, pp. 255–265, Mar. 2019, doi: 10.1016/j.ymssp.2018.09.014.

C. ZHOU ET AL., “Vibration singularity analysis for milling tool condition monitoring,†Int. J. Mech. Sci., vol. 166, p. 105254, Jan. 2020, doi: 10.1016/j.ijmecsci.2019.105254.

S. H. ABBAS, J. K. JANG, D. H. KIM, AND J. R. LEE, “Underwater vibration analysis method for rotating propeller blades using laser Doppler vibrometer,†Opt. Lasers Eng., vol. 132, p. 106133, 2020, doi: 10.1016/j.optlaseng.2020.106133.

G. CHEN, M. LIU, AND J. CHEN, “Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks,†Mech. Syst. Signal Process., vol. 145, p. 106951, Nov. 2020, doi: 10.1016/j.ymssp.2020.106951.

B. P. KAMIEL, N. PRASTOMO, AND B. RIYANTA, “Ekstraksi parameter statistik domain waktu dan domain frekuensi untuk mendeteksi kavitasi pada pompa sentrifugal berbasis Principal Component Analysis (PCA),†Rekayasa Mesin, no. February, pp. 165–176, 2019.

S. O. AYAT, M. KHALIL-HANI, A. A. H. AB RAHMAN, AND H. ABDELLATEF, “Spectral-based convolutional neural network without multiple spatial-frequency domain switchings,†Neurocomputing, vol. 364, pp. 152–167, Oct. 2019, doi: 10.1016/j.neucom.2019.06.094.

X. XU, D. CAO, Y. ZHOU, AND J. GAO, “Application of neural network algorithm in fault diagnosis of mechanical intelligence,†Mech. Syst. Signal Process., vol. 141, p. 106625, Jul. 2020, doi: 10.1016/j.ymssp.2020.106625.

X. ZHANG et al., “Understanding the learning mechanism of convolutional neural networks in spectral analysis,†Anal. Chim. Acta, vol. 1119, pp. 41–51, Jul. 2020, doi: 10.1016/j.aca.2020.03.055.

J. ACQUARELLI, T. VAN LAARHOVEN, J. GERRETZEN, T. N. TRAN, L. M. C. BUYDENS, AND E. MARCHIORI, “Convolutional neural networks for vibrational spectroscopic data analysis,†Anal. Chim. Acta, vol. 954, pp. 22–31, Feb. 2017, doi: 10.1016/j.aca.2016.12.010.

M. Y. ASR, M. M. ETTEFAGH, R. HASSANNEJAD, AND S. N. RAZAVI, “Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach,†Mech. Syst. Signal Process., vol. 85, pp. 56–70, Feb. 2017, doi: 10.1016/j.ymssp.2016.08.005.

D. ROMAHADI, H. XIONG, AND H. PRANOTO, “Intelligent system for gearbox fault detection & diagnosis based on vibration analysis using Bayesian Networks,†in IOP Conference Series: Materials Science and Engineering, 2019, vol. 694, doi: 10.1088/1757-899X/694/1/012001.

G. FAN, J. LI, AND H. HAO, “Vibration signal denoising for structural health monitoring by residual convolutional neural networks,†Meas. J. Int. Meas. Confed., vol. 157, p. 107651, Jun. 2020, doi: 10.1016/j.measurement.2020.107651.

K. SABANCI, “Artificial intelligence based power consumption estimation of two-phase brushless DC motor according to FEA parametric simulation,†Meas. J. Int. Meas. Confed., vol. 155, p. 107553, Apr. 2020, doi: 10.1016/j.measurement.2020.107553.

A. A. A. MOHD AMIRUDDIN, H. ZABIRI, S. S. JEREMIAH, W. K. TEH, AND B. KAMARUDDIN, “Valve stiction detection through improved pattern recognition using neural networks,†Control Eng. Pract., vol. 90, pp. 63–84, Sep. 2019, doi: 10.1016/j.conengprac.2019.06.008.

L. J. KAO AND C. C. CHIU, “Application of integrated recurrent neural network with multivariate adaptive regression splines on SPC-EPC process,†J. Manuf. Syst., vol. 57, pp. 109–118, Oct. 2020, doi: 10.1016/j.jmsy.2020.07.020.

Z. HUA YE, H. JIE NI, D. ZHANG, AND H. XIN XUE, “Neural network-based fault detection for nonlinear networked systems with uncertain medium access constraint: Application to motor systems,†ISA Trans., Nov. 2020, doi: 10.1016/j.isatra.2020.11.003.

M. KAHANI et al., “Application of M5 tree regression, MARS, and artificial neural network methods to predict the Nusselt number and output temperature of CuO based nanofluid flows in a car radiator,†Int. Commun. Heat Mass Transf., vol. 116, p. 104667, Jul. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104667.

N. JAYASUNDARA, D. P. THAMBIRATNAM, T. H. T. Chan, and A. Nguyen, “Damage detection and quantification in deck type arch bridges using vibration based methods and artificial neural networks,†Eng. Fail. Anal., vol. 109, p. 104265, Jan. 2020, doi: 10.1016/j.engfailanal.2019.104265.

D. ROMAHADI, F. ANGGARA, A. F. SUDARMA, AND H. XIONG, “The implementation of artificial neural networks in designing intelligent diagnosis systems for centrifugal machines using vibration signal,†SINERGI, vol. 25, no. November 2020, 2021, doi: 10.22441/sinergi.2021.1.012.

Y. ZHANG, Y. ZHANG, K. HE, D. LI, X. XU, AND Y. GONG, “Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network,†J. Manuf. Syst., Feb. 2021, doi: 10.1016/j.jmsy.2021.01.018.

V. B. BETELIN et al., “Neural network approach to solve gas dynamics problems with chemical transformations,†Acta Astronaut., vol. 180, pp. 58–65, Mar. 2021, doi: 10.1016/j.actaastro.2020.11.058.

G. A. LONGO, S. MANCIN, G. RIGHETTI, C. ZILIO, L. ORTOMBINA, AND M. ZIGLIOTTO, “Application of an Artificial Neural Network (ANN) for predicting low-GWP refrigerant boiling heat transfer inside Brazed Plate Heat Exchangers (BPHE),†Int. J. Heat Mass Transf., vol. 160, p. 120204, Oct. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120204.

T. SABISTON, K. INAL, AND P. LEE-SULLIVAN, “Application of Artificial Neural Networks to predict fibre orientation in long fibre compression moulded composite materials,†Compos. Sci. Technol., vol. 190, p. 108034, Apr. 2020, doi: 10.1016/j.compscitech.2020.108034.