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EFFECT OF INFILL PATTERN, 
INFILL DENSITY, AND INFILL 
ANGLE ON THE PRINTING TIME 
AND FILAMENT LENGTH OF 3D 
PRINTING 
 

To optimize the 3D printing process, the influence of its parameters 

on the performance of the printing process needs to be investigated. 

This research investigates the effect of infill pattern, infill density, 

and infill angle on the printing time and the filament material 

length. First, this research collected the printing time and the 

filament length data for each combination of infill pattern, infill 

density, and infill angle. The data collection was conducted by 

implementing Repetier-Host v.2.1.6 software as a data acquisition 

tool. Then, the General Linear Model was applied to analyze the 

effect of infill pattern, infill density, and infill angle on the printing 

time and filament length. Based on the analysis, higher infill density 

increases the printing time for each infill pattern and each infill 

angle. Also, higher infill density increases the filament length for 

each infill pattern and each infill angle. The implementation of the 

Gyroid type of infill pattern reduces the required printing time for 

each density. Meanwhile, the implementation of the 3D honeycomb 

type of infill pattern increases the filament length for each infill 

angle. The use of the 45° infill angle increases the filament length 

and printing time. To reduce the filament length and printing time, 

the 90° infill angle should be implemented. 

 

Keywords: : Infill Pattern; Infill Density; Infill Angle; Printing 

Time; Filament Length; 3D Printing. 

 

 

1. INTRODUCTION 

3D printing or Fused Filament Fabrication (FFF) is a manufacturing process of a physical object based on a 

digital model input by printing the object layer by layer. The performance of the 3D printing process, 

especially for engineered structural applications, is affected by the printed material and the process 

parameters [1]. Therefore, the influence of 3D printing process parameters on the process performance needs 

to be investigated to optimize the process. Suteja and Soesanti [2] identify several important 3D printing 

process parameters in building a printed part. The parameters are build orientation, layer thickness or layer 

height, feed rate or infill deposition rate, infill density, deposition angle or raster angle or infill angle, 

extrusion temperature, infill pattern, number of outer shell layers, shell thickness, material type, printer type, 

strain rate, coloring agent, and nozzle diameter or infill width. This research concerns only to investigate the 

influence of three process parameters, which are infill pattern, infill density, and infill angle. Infill pattern is 

the pattern of the material used to build the volume of the printed part. Infill density shows the volume ratio 

between the cellular printed part to the solid printed part. The infill angle is the angle between the pattern line 

to the X/Y/Z-axis. For example, Figure 1 below shows a rectilinear infill pattern with different infill densities 

and a certain infill angle.  

Various infill patterns have been introduced and implemented. Perimeter or concentric infill pattern is 

used by Chacón et al. [3] to characterize the effect of build orientation, layer thickness and feed rate on the 

mechanical performance of PLA. Sukindar et al. [4] and Ouhsti, et al. [5] implemented a rectilinear infill 

pattern to investigate the influence of process parameters for tensile strength using polylactic acid (PLA) 

material. Tao et al. [6] implemented a circle, square/grid, and voronoi infill pattern to investigate their 

compression performance. Nazir et al. [7] reviewed octahedron, 2D honeycomb, 3D honeycomb, square, 
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diamond, P-type, gyroid, D-type, and WP type infill pattern to identify the areas that need to be investigated 

and future research. Ćwikła et al. [8] investigated the influence of rectangular, grid, lines, concentric, hilbert 

curve, honeycomb, 3D honeycomb patterns on several selected mechanical properties. Wu et al. [9] 

developed a machine learning and image classification system to detect the defect of the 3D printing process 

that uses honeycomb, 3D honeycomb, concentric, line, rectilinear, hilbert curve, archimedean chords, and 

octagram spiral infill patterns. Chen et al. [10] optimized the 3D printing process parameters when 

manufacturing polylactic acid filament-based Army-Navy retractors by implementing eleven different infill 

patterns, which are rectilinear, grid, triangles, stars, cubic, line, honeycomb, 3D honeycomb, hilbert curve, 

archimedean chords, and octagram spiral. Based on the literature study above, various infill patterns are 

available. However, some infill patterns have slight variation compared to other patterns. Therefore, this 

research limits the investigation only for hilbert curve, gyroid, archimedean chords, line, 3D honeycomb, 

octagram spirals, rectilinear, stars, cubic, triangle, concentric, grid, and honeycomb patterns as shown in 

Figure 2.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Infill density and infill angle. 

Dave et al. [11] explored the effect of infill density and infill pattern on tensile properties and modes 

of failure. Quanjin et al. [12] compared five infill pattern structures, which are normal, triangle, square, 

hexagonal, and tetrahedral patterns, of single polylactic acid tubes and hybrid tubes on their energy-absorbing 

characteristics. They claim that the infill pattern structure had a significant influence on energy absorbing 

characteristics. Cho, et al. [13] studied the influence of infill pattern, infill density, and layer thickness on the 

mechanical strength of PLA material in a 3D printing machine. Vosynek et al. [14] show the influence of 

filling angle, the shape of the filling, the orientation of the parts during printing, the material and pigment 

manufacturer to the mechanical properties of the 3D printed part. Iyibilgin, et al. [15] investigated the 

influence of several infill patterns on the printing time. Khan et al. [16] evaluated the effect of infill pattern 

on the printing time of the specimen. Baich, et al. [17] investigated the influence of infill patterns on printing 

costs. According to this research, both filament material length and printing time have an impact on the 3D 

printing cost.  

Based on the literature above, it is obvious that the infill pattern, infill density, and infill angle have an 

effect on certain mechanical properties of the 3D printed part. However, the research found in the literature 

does not investigate the influence of the combination of infill pattern, infill density, infill angle to the printing 

time. In addition, the earlier research does not consider the influence of the infill pattern, infill density, and 

infill angle on the filament length. According to Medina-Sanchez et al. [18], the simplest printing time 

estimation can be calculated as the total motion path length divided by the programmed printing speed. As 

this estimation results in an error of more than 30% from the actual printing time, it is assumed that there is 

no relation between printing time and filament length. Therefore, the infill pattern, infill density, and infill 

angle are expected to have an impact on both the printing time and filament length. The filament length 

influences the material cost and the printing time determines the production cost. As they are both crucial 

factors to optimize the 3D printing process, it is important to investigate the influence of infill pattern, infill 

density, and infill angle not only to the printing time but also to the filament length.  

The goal of this research is to understand the effect of infill pattern, infill density, and infill angle on 

the printing time and filament length. Two steps are conducted in this research. First, this research collects 

the printing time and the filament length data for each combination of infill pattern, infill density, and infill 

angle. Then, this research analyses the data to understand the influence of these parameters on the required 

printing time and filament length. By understanding the influence of these parameters, the minimum 
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production cot can be achieved in building a 3D printed part. 

The remaining paper is organized as follows. Section 2 discusses the research methodology. In this 

section, the experiment and the data collection are explained. Then, the result obtained in the experiment and 

its interpretation are described in Section 3. Finally, section 4 shows the main conclusions of the research. 

Figure 2: Various infill patterns. 
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2. RESEARCH METHODOLOGY 

A statistical experiment is applied to investigate the influence of infill pattern, infill density, and infill angle 

of the 3D printing process to the filament length and the printing time. First, this research develops a 

specimen model as the case study. The specimen is designed based on ASTM D638 standards according to 

ASTM International for the tensile strength test as shown in Figure 3 [19]. Then, this research collects the 

required filament length and the printing time to print the specimen as the response parameters. To generate 

and achieve a consistent filament length and the printing time data, this research implements Repetier-Host 

v.2.1.6 software as a data acquisition tool. 

 

 

 

 

 

 

 

 

 

Figure 3: Tensile strength test specimen in millimeter [19]. 

Two hundred thirty-four experiments are conducted to investigate the influence of thirteen different 

infill patterns as shown in Table 1. For each infill pattern, two other process parameters, which are infill 

density and infill angle, are considered at three levels. Three infill density levels are 10%, 50%, and 90%. 

The value of density level is determined to investigate the least and the densest printed part excluding the 

hollow and solid printed part. In addition, the angle values of each level of infill pattern are 0, 45, and 90. 

The value of infill angle level is determined to investigate the longitudinal and the transverse printed part. 

Meanwhile, the values of other 3D printing process parameters are determined as a constant according to the 

tools and material catalogs and literature review. Table 2 shows the constant parameter value of the 3D 

printing process. 

 

Table 1: Value of each factor level. 

INFILL PATTERNS INFILL DENSITIES (%) INFILL ANGLES () 

Hilbert Curve, Gyroid, Archimedean Chords, Line, 3D Honeycomb, 

Octagram Spirals, Rectilinear, Stars, Cubic, Triangle, Concentric, Grid, 

and Honeycomb 

10 

50 

90 

0 

45 

90 

 

Table 2: Value of each constant parameter. 

PARAMETERS VALUES 

Layer Height (mm) 0.3 

Number of Outer Shell Layers 3 

Shell Thickness (mm) 0.3 

Layer Width (mm) 0.4 

Bed Temperature (°C) 60 

Build Orientation X-Y 

Extrusion Temperature (°C) 205 

Printing Speed (mm/s) 80 

Diameter Filament (mm) 1.75 
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3. RESULTS AND DISCUSSION 

Table 3 shows the filament length and printing time values for various combinations of infill pattern, infill 

density, and infill angle. The filament length is measured in millimeter and the printing time is measured in 

second. The result of the General Linear Model analysis is shown in Table 4 and Figure 4. Table 4 shows 

which factor that has and does not have a significant effect on the response. The main effect plots for 

filament length and printing time are shown in Figure 4. 

Table 3: Experiment result. 

INFILL  

PATTERNS 

INFILL 

DENSITIES 

(%) 

INFILL ANGLES 

0 45 90 

FILAMENT 

LENGTH 

(mm) 

PRINTING 

TIME 

(second) 

FILAMENT 

LENGTH 

(mm) 

PRINTING 

TIME 

(second) 

FILAMENT 

LENGTH 

(mm) 

PRINTING 

TIME 

(second) 

3D Honeycomb 

10% 2371 1964 2373 1968 2368 1956 

50% 3019 2135 3020 2140 3015 2128 

90% 3753 2324 3754 2328 3750 2317 

Archimedean 

Chords 

10% 2336 1964 2337 1969 2335 1957 

50% 2861 2113 2862 2117 2857 2105 

90% 3384 2259 3385 2263 3381 2253 

Concentric 

10% 2390 1978 2391 1982 2389 1970 

50% 2889 2118 2890 2122 2885 2111 

90% 3388 2259 3389 2263 3385 2251 

Cubic 

10% 2375 1975 2421 1989 2413 1977 

50% 2934 2132 2953 2140 2945 2130 

90% 3421 2268 3420 2276 3416 2264 

Grid 

10% 2431 1979 2423 1981 2428 1972 

50% 2917 2118 2946 2128 2914 2118 

90% 3439 2266 3423 2276 3436 2266 

Gyroid 

10% 2351 1961 2352 1966 2348 1954 

50% 2802 2079 2803 2083 2798 2071 

90% 3257 2196 3258 2201 3254 2189 

Hilbert Curve 

10% 2328 1961 2339 1968 2324 1955 

50% 2867 2118 2863 2130 2864 2106 

90% 3379 2269 3385 2282 3375 2260 

Honeycomb 

10% 2423 1990 2421 1994 2428 1986 

50% 3021 2160 3014 2160 3012 2149 

90% 3462 2283 3468 2288 3462 2275 

Line 

10% 2354 1964 2377 1975 2347 1955 

50% 2881 2113 2920 2126 2869 2103 

90% 3430 2267 3448 2275 3420 2258 

Octagram Spirals 

10% 2337 1966 2338 1969 2333 1957 

50% 2859 2113 2860 2117 2856 2105 

90% 3387 2261 3388 2265 3383 2253 

Rectilinear 

10% 2391 1974 2382 1975 2393 1968 

50% 2887 2113 2905 2122 2877 2103 

90% 3419 2264 3429 2269 3414 2256 

Stars 
10% 2373 1975 2410 1986 2420 1978 

50% 2969 2143 2954 2141 2949 2130 
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90% 3428 2261 3420 2276 3418 2263 

Triangle 

10% 2375 1976 2415 1987 2421 1980 

50% 2969 2144 2955 2142 2948 2131 

90% 3428 2273 3420 2280 3418 2268 

 

Based on the collected data shown in Table 3, the minimum printing time is achieved by 

implementing the Gyroid pattern with a 10% density and 90 infill angle. The minimum filament length is 

achieved by implementing the Hilbert Curve pattern with a 10% density and 90 infill angle. Meanwhile, the 

implementation of the 3D honeycomb pattern with a 90% density and 45 infill angle requires the maximum 

filament length and printing time. For 10 % infill density, the implementation of the Grid pattern with 0 

infill angle requires the maximum filament length. The maximum printing time is achieved by using the 

Honeycomb pattern with 45 infill angle. For 50% infill density, the minimum filament length and printing 

time is achieved by using the Gyroid pattern with 90 infill angle. The implementation of Honeycomb with 

0 infill angle requires the maximum filament length and printing time. For 90% infill density, the 

implementation of the Gyroid pattern with 90 infill angle requires the minimum filament length and printing 

time.  

For each infill angle, the implementation of the Gyroid pattern with 10% infill density requires the 

minimum printing time. The implementation of the Hilbert curve achieves the minimum filament length for 

0 and 90 infill angle. For the 45 infill angle, the minimum filament length is achieved by implementing the 

Archimedean Chords infill pattern. The maximum filament length and printing time are achieved by using 

the 3D honeycomb pattern with 90% infill density. Most of the patterns achieve the minimum filament length 

and printing time by implementing a 10% infill density and 90 infill angle. The maximum filament length 

and printing time are required by most of the patterns by implementing a 90% density and 45 infill angle. 

Table 4: Effect factor to response. 

FACTOR RESPONSE EFFECT 

Infill Density Filament Length Yes 

Infill Angle Filament Length No 

Infill Pattern Filament Length Yes 

Infill Density Printing Time Yes 

Infill Angle Printing Time Yes 

Infill Pattern Printing Time Yes 

 

Based on the data shown in Table 4 and Figure 4, the infill density is found as the most influenced 

factor for required filament length and printing time. The implementation of 90% infill density creates the 

densest printed part. Therefore, it requires the maximum filament length and printing time. On the contrary, 

the implementation of 10% infill density creates the least printed part. Therefore, the minimum filament 

length and printing time are achieved by implementing the 10% infill density.  

The infill pattern also has a significant effect on filament length and printing time. The gyroid pattern 

is the simplest geometry compared to other patterns. Therefore, it requires the shortest printing time. Hilbert 

curve requires the shortest length among other patterns. However, it needs the longer printing time compared 

to the Gyroid pattern because it implements more rapid nozzle movement with an unfilled path. 3D 

honeycomb pattern requires the maximum filament length and printing time because it creates a complex and 

tight path.  

Furthermore, the infill angle has an influence on the printing time. However, it does not influence the 

filament length. For each density, the 90 and 45 infill angle require the minimum and maximum printing 

time respectively. The 90 infill angle creates a longitudinal path that requires a shorter unfilled path 

compared to the 45 infill angle that creates a diagonal path. However, the Triangle, Star, and Cubic infill 

patterns with 10% density and 0 infill angle require the minimum printing time because they create a 

longitudinal path in 0 infill angle. 
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4. CONCLUSIONS 

In this research, the influence of infill pattern, infill density, and infill angle to the printing time and the 

length of the filament material is analyzed. Based on the analysis, higher infill density requires a longer fila-

ment length and printing time for each infill pattern and infill angle. On the contrary, the minimum filament 

length and printing time are achieved by implementing the lowest infill density. The Gyroid infill pattern 

achieves the minimum printing time for each density. Meanwhile, the 3D honeycomb infill pattern requires 

the maximum filament length for each infill angle. The implementation of the 45 infill angle requires the 

maximum filament length and printing time. The minimum filament length and printing time will be 

achieved by implementing the 90 infill angle.  

Figure 4: Main effect plot for filament length and printing time. 
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