Skema JCM (Joint Crediting Mechanism) pada Investasi Fasilitas Pemurnian Biogas di Pabrik Kelapa Sawit

Authors

  • Irhan Febijanto BPP Teknologi

DOI:

https://doi.org/10.21776/ub.jrm.2020.011.01.4

Keywords:

Wastewater, Palm Oil Mill, Bio-CNG, Credit Carbon

Abstract

Until now, the use of biogas in Palm Oil Mill (POM) is still limited to use as a fuel for Biogas Power Plant or utilize an additional boiler fuel. The use of biogas to be taken to other places is constrained by the remote location of POM and the transportation method. However, by converting biogas into bio-CNG, it can be used as vehicle fuel. The investment feasibility study of bio-CNG production facilities was carried out for two case studies, in POM with a capacity of 30 t/hr and 60 t/hr. The funding uses 100% of the equity fund and subsidy of the Joint Crediting Mechanism (JCM) scheme. Using the JCM scheme, the value of investment gets 50% funding assistance, and carbon credits from the reduction of Greenhouse Gas (GHG) emissions belong to the Japanese government. As a result of the study, it is known that the development of bio-CNG production facilities with 100% equity, IRR of both POM is below 11.08%, so it is not economically feasible. From the sensitivity analysis, it indicates that the increase in selling price of bio-CNG of +10%, a decrease in the investment of -10%, an increase in biogas input of +10% still cannot increase the Internal Rate of Return (IRR) value. Funding from JCM of 50% of the investment value increased the IRR value of 30t/hr and 60t/hr increasing from 6.54% to 18,29% and from 8.13% to 20.82%, respectively. The values of IRR became higher rather than the benchmark (IRR=11.08%). Carbon emissions reduction of the operation of the bio-CNG production facility and the use of bio-CNG for vehicle fuels in both of POMs are 38,735 tCO2/yr and 77,471 tCO2/yr, respectively. Using subsidy from carbon credits or other incentives will significantly help improve the economically feasible of bio-CNG production facilities in POM.

References

Statistik Perkebunan Indonesia, 2015-2017 Kelapa Sawit, Direktorat Jenderal Perkebunan

BRURY MARCO SILALAHI dan SUPIJATNO, Pengelolaan Limbah Kelapa Sawit (Elaeis guineensis Jacq.) di Angsana Estate, Kalimantan Selatan, Bul. Agrohorti v.5,n.3, pp. 373-383, 2017.

LIN MARLINA, SETIARTI SUKOTJO, SIDIK MARSUDI, Potential of Oil Palm Empty Fruit Bunch (EFB) as Media for Oyster Mushroom, Plerotus Ostratus Cultivation, Procedia Chimistr, v.16, pp.427-431,2015.

SHAFIQUZZAMAN SIDDIQUEE, SAILI NUR SHAFAWATI, and LAILA NAHER, Effective composting of empty fruit bunches using potential Trichoderma strains, Biotechnology Reports, v.13, March 2017, pp.1-7, March 2017.

J. RATNASHINGAM and WAGNER, The Market Potential of Oil Palm Empty-Fruit Bunches Particlebard as a Furniture Material, J. Applied Sciences, v.9, n.10, pp. 1974-1979, 2009.

NASRIN, A B, VIJAYA, S., LOH, S K., ASTIMAR, A. A. and LIM, W S., Quality Compliance and Environmental Commercial Empty Fruit Bunch (EFB) Pellet Fuel in Malaysia, Journal of Oil Palm Research v.29,n.4, pp.507-578, Dec. 2017.

MUHAMMAD GINTA MUNTHE, ACHWIL PUTRA MUNIR, ADIAN RINDANG, Pemanfaatan Cangkan Kelapa Sawit dan Kelapa Limbah Sawit (Sludge) sebagai Bahan Baku Pembuatan Biobriket Arang, J. Rekayasa Pangan dan Pertanian, v.3,n.4, pp.518-525,2015.

ZAINAL ABIDIN NASUTION dan HARRY P. LIMBONG, Pemanfatan Serbuk Arang Cangkang Kelapa Sawit sebagai Subtisuti Carbon Blca untuk Bahan Pengisi Kompon Karet, Jurnal Riset Teknologi Industri, v.11,n.1, pp 66-75,2017.

ELLY KURNIATI, Pemanfaatan Cangkang Kelapa Sawit sebagai Arang Aktif, Jurnal Penelitan Ilmu Teknik, v.8, n.2, pp.96-103,2008.

SULHATUN, Pemanfaatan Asap Cair berbasis Cangkang Sawit sebagai Bahan Pengawet Alternative, Junral Teknologi Kimia Unimal, v.1,n.1, pp.91-100,2012.

RIADI, H., dan DANIL, D., Pemanfaatan Bahan Limbah Cangkang Sawit sebagai Bahan Pengisi Agregat Kasar pada Beton. Al-Ard: Jurnal Teknik Lingkungan, v.1,n.2,pp. 80-85,2016.

HERRY ISWAHYUDI, MILA LUKMANA, MUHAMMAD YUDHA, Limbah Serabut Kelapa Sawit sebagai Media Tanam Alternatif bagi Jamur Tiram Putih (Pleurotus Ostreatus), Jurnal Teknologi Agro-Industri v.4,n.1, pp. 11-19, 2017.

SHABRI PUTRA WIRMAN, YULIA FITRI dan WILDO APRIZA, Karakterisasi Komposit Serat Sabut Kelapa Sawit dengan Perekat PV Ac sebagai Absorber, Journal Online of Physics, v.1,n.2, pp.10-15, 2016.

YOJIRO KOBA and AYAAKI ISHIZAKI, Chemical Composition of Palm Fiber and Its Feasibility as Celulosic Raw Material for Sugar Production, Agric. Biol. Chem., v.54,n.5, pp.1183-1187,1990.

HASPIADI dan KURNIAWATY, Pemanfaatan Limbah Padat Abu Cangkang dan Serat Kelapa Sawit dari Boiler untuk Pembuatan Bata Beton Ringan, Jurnal Riset Teknologi Industri, v.9,n.2, pp. 120-128,2016.

MISRI GOZAN, NADJIB AULAWY, SITI FAUZIYAH RAHMAN, RACHMAWAN BUDIARTO, Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent), International Journal of Applied Engineering Research, v.13,n.8, pp. 6151-6157,2018.

FEBIJANTO, I., Optimalisasi Pemanfaatan Gas Metana sebagai Sumber Energi di Pabrik Kelapa Sawit Sebagai Antisipasi Harga Jual Listrik Berdasarkan Biaya Pokok Penyediaan (BPP) Pembang-kitan, Jurnal Teknologi Lingkungan, v.19,n.01, pp.49-60,2018.

FEBIJANTO, I., Tinjauan Komponen Harga Jual Tenaga Listrik dari Pembangkit Listrik Tenaga Biogas dengan Teknologi Covered lagoon, in:Prosiding Seminar Nasional Kimia, Hotel Grand Quality, Yogyakarta, pp.72-73, Mei 2017.

AMINULLAH MOHTAR, WAI SHIN HO, AHMAD MUZAMMIL IDRIS, HASLENDA HASHIM, JENG SHIUN LIM, PENG YEN LIEW, GABRIEL LING HOH TECK, CHIN SIONG HO, Palm Oil Mill Effluent (POME) Biogas Techno-Economic Analysis for Utilisation as Bio Compressed Natural Gas, Chem. Engg. Transactions, v.63, pp.265-270, 2018.

NATIONAL BIOGAS IMPLEMENTATION (EPP5), Biogas Capture and CDM Project Implementation for Palm Oil Mils, National Key Economic Areas (NKEA), 2014, update June 2014, 9.

BERNHARD, S., and et al, “Technical -economic analysis for determining the feasibility threshold for tradable biomethane certificates, BIOSURF Fuelling Biomethane, 2016.

R. CHANDRA, et al, Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas, Applied Energy, v.88, n.11, pp. 3969–3977, 2011.

https://materiselamasekolah.wordpress.com/2016/02/26/pembangkit-listrik-tenaga-gas-pltg/

BUDISATRIYO, C.A, et al, Meningkatkan Penggunaan Compressed Natural Gas sebagai Bahan Bakar Angkutan Umum Jakarta, Jurnal Ketahanan Energi, v.4,n.1, pp. 1-25,2018.

LIM C, an et al, Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases., Appl Energy, v.139, pp.17–29, 2015.

NURDJANAH, N., et al, Evaluasi Penggunaan CNG Pada Angkutan Umum (Bajaj, Taksi, dan Mikrolet) di Jakarta, Jurnal Penelitian Transportasi Darat, v.14,n.2, pp.96-111,2012.

PERATURAN PEMERINTAH No:79/2014 tentang Kebijakan Energi Nasional (KEN).

Peraturan Presiden Republik Indonesia Nomor 61 Tahun 2011.

NASRIN ABU BAKAR, et al, Bio-Compressed Natural Gas (Bio-CNG) Production from Palm Oil Mill Effluent (POME), MPOB Information Series NO.618, ISSN 1511-7871,2017.

https://www.env.go.jp/earth/cop/cop22/common/pdf/event/11/01_presentation2.pdf[diakses 30 Juni 2019]

Pasarkarbon, Pengantar Pasar Karbon untuk Pengendalian Perubahan Iklim, PMR Indonesia, 2018, pp.14-75

http://gec.jp/jcm/2018seminar_jakarta/files/2-4_GEC.pdf [diakses 30 Juni 2019]

http://jcm.ekon.go.id/id/index.php/content/MjY%253D/proyek_teregistrasi [diakses, 30 Juni 2019]

UNFCCC (United Nations Framework Convention on Climate Change), (2017) concerning Methane recovery in wastewater treatment, III.H./Version 14, Sectoral Scope: 13 EB 53. https://cdm.unfccc.int/filestorage/A/N/F/ANF0MTK4BHZC9O7IEY68P5DJ2VRQ3X/EB53_repan17_Revision%20of%20AMS-III.H_ver14.pdf?t=bVZ8b3FuNnM5fDCh-HkC6dg9RQbKR6oj1KlY [Diakses 27 November 2018]

CLEAN DEVELOPMENT MECHANISM, AMS-III.AQ, Small-scale Methodology, Introduction of Bio-CNG in transportation application, Ver.02.0, sectoral scope.7, UNFCCC, pp.6-7.

Guidelines for Estimating Greenhouse Gas Emissions of Asian Development Bank Project, Asian Development Bank, pp.26.

YANG L, and et al, 2014, Progress and Perspectives in Converting Biogas to Transportation Fuels, Renew Sustain Energy Rev.,v.40 ,pp.1133–52, 2014.

RAHAYU, A.S, et al, Buku Panduan Konversi POME menjadi Biogas Pengembangan Proyek di Indonesia 2nd edition, Winrock International, pp. 56-58,2015.

FEBIJANTO, I, Harga Jual Bio-CNG dari POME (Palm Oil Mill Effluent) sebagai Sumber Energi Alternatif, submitted to Serambi Engineering,2019.

BAUER F, and et al, Biogas Upgrading – Review of Commercial Technologies. Svenskt Gastekniskt Center (SGC) AB: Malmö, Sweden, pp. 52-53, 2013.

SMITH, M, Associated with Compressed Natural Gas Vehicle Fueling Infrastrucure, U.S. Department of Energy, pp.12,2014.

LOH, H.P et al, 2002, Process Equipment Cost Estimation Final Report, U.S. Department Energy,pp.70.

https ://www.bi.go.id/seki/tabel/TABEL1_26.pdf [diakses 25 Juni 2019]

RICARDO ENERGY and ENVIRONMENT, Assessment of Cost And Benefits of Biogas and Biomethane in Ireland, Sustainable Energy Authority of Ireland, 2017, pp.52-53.

https://www.inflation.eu/inflation-rates/indonesia/historic-inflation/cpi-inflation-indonesia.aspx [diakses 25 Juni 2019]

PGN, Investor Presentation Consolidated 3M-2019 Update, 2019.

https://finance.detik.com/energi/d-3681770/pakai-gas-bumi-pgn-laundry-di-bogor-ini-hemat-biaya-operasi [diakses 25 Juni 2019]

https://finance.detik.com/energi/d-3617922/pakai-gas-bumi-pengusaha-kue-bisa-berhemat-sekaligus-jaga-kualitas [diakses 25 Juni 2019]

Downloads

Published

2020-05-15

Issue

Section

Articles