Pengaruh Lip Thickness Turncated Nozzle Sudut Luar terhadap Karakteristik Api Difusi Concentric Jet Flow


  • Ahmad Akromul Huda Brawijaya University of Malang
  • Agung Sugeng Widodo Brawijaya University of Malang
  • Eko SIswanto Brawijaya University of Malang



Diffussion Flame, Concentric Jet Flow, Lip Thickness, Turncated Nozzle


Diffusion combustion is a daily combustion process where is often used primarily in industrial systems. An optimal burner design is needed to get more efficient combustion results. Then the shape of the burner nozzle greatly affects the turbulence between the fuel and air which forms the flow recirculation zone. The flow recirculation zone functions to produce homogeneous mixing and get a more perfect combustion. Recirculation zones are formed to disrupt flow rates, causing vortices and backflow around the end of nozzle. This research uses burner concentric jet flow. The lip thickness of the outer angles turncated nozzle are used 16 mm, 12 mm, 8 mm, 4 mm, and 0 mm length variation To obtain flame stability, the lift off and blow off limits are used with variations in air velocity. Thermocouples are used to measure the flame temperature distribution. The numerical simulations are used to reinforce this study. The results showed that the characteristics of the concentric jet flow diffusion affected by the use of the lip thickness of the outer angles turncated nozzle. The highest concentric jet flow diffusion stability is at 16 mm nozzle. The highest concentric jet flow diffusion temperature is at 12 mm nozzle. Experimental and numerical simulations show the perfect combustion on the 12 mm lip thickness nozzle. This can be seen by direct photographs of blue-dominated flames and the visualization of the temperature contour distribution which is dominated by red.

Author Biographies

Ahmad Akromul Huda, Brawijaya University of Malang

Department of Mechanical Engineering, Mechanical Engineering Master Program, Brawijaya University of Malang

Agung Sugeng Widodo, Brawijaya University of Malang

Department of Mechanical Engineering, Mechanical Engineering Master Program, Brawijaya University of Malang

Eko SIswanto, Brawijaya University of Malang

Department of Mechanical Engineering, Mechanical Engineering Master Program, Brawijaya University of Malang


WARDANA, I.N.G., Bahan bakar dan teknologi pembakaran, Cetakan Pertama. PT. Danar Wijaya–Brawijaya University Press, Malang. 2008

FAIZAL, ELKA., “Pengaruh variasi lip thickness pada nozzle terpancung terhadap karakteristik api pembakaran difusi concentric jet flowâ€, Jurnal Rekayasa Mesin Vol.7, No.2, pp. 13-20. 2016

SASONGKO, M.N., WIJAYANTI, W., “Karakteristik api premiks biogas pada counterflow burnerâ€, in: Proceeding seminar nasional tahunan teknik mesin XIV (SNTTM XIV,) pp. 45-5, oktober. 2015

GLASSMAN, IRVIN and YETTER, R.A., Combustion, Fourth edition, San Diego-California. Elsevier. 2008081907303254

MANSOUR, M.S., et all., “Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burnerâ€,Elsevier:Combustion and flame, vol.000, pp. 1-21, Oktober.2016

WIDODO, A. S & TRI AGUNG R., Studi kestabilan api difusi double concentric jet flow (Pengaruh posisi, sudut kemiringan dan jumlah sirip swirl, Tesis, MT, Universitas Gadjah Mada, Yogyakarta, 2003

RANKIN, D.D., THERKELSEN, P., Lean combustion technology and control, 2nd Edition, Elsevier. 2016

BAANANTO, F., “Studi numerik pembakaran butana (C4H10) dalam meso scale combustor dengan perforated plateâ€, Jurnal Rekayasa Mesin, Vol.9, No.2, pp. 69-74, 2018

UTOMO, FW., NURSASONGKO, M.N., WIDYA, W., “Studi eksperimen penambahan swirl vanes pada api difusi coflow burnerâ€, in: Proceeding of the national symposium on thermofluids viii, pp. 120-125, Nov. 2016

SRINIVASARAO, T., MURTHY, I.D., LOVARAJU, P., RATHAKRISHNAN, E., “Effect of inner nozzle lip thickness on co-flow jet characteristicsâ€, De Gruyter:Int J Turbo Jet Eng, pp 1-7. Feb-ruari. 2016

PAYRI, R., VIERA, J.P., GOPALAKRISHAN, V., SZYMKOWICZ, P.G., “The effect of nozzle geometry over ignition delay and flame lift-off of reacting direct-injection sprays for three different fuelsâ€, Elsevier:Fuel vol. 199, pp. 76-90. 2017

BRAEUER, ANDREAS., “Shadowgraph and Schlieren Techniquesâ€, in: Supercritical Fluid Science and Technology, Vol. 7., chapter 4, Elsevier, 2015

SETTLESS, G.S., “Smartphone schlieren and shadowgraph imagingâ€, Optics and Lasers in Engineering: Elsevier, Vol. 000, pp. 1-13.2017

WICAKSONO, H., “Simulasi numeris karakteristik pembakaran ch4/co2/udara dan ch4/co2/o2 pada counterflow premixed burnerâ€, Jurnal Rekayasa Mesin Vol.8, No.2, pp. 91-99. 2017

VERSTEEG, H.K., MALALASEKERA, W., An introduction to computational fluid dynamics, Second edition, Harlow-London, Pearson Prentice Hall. 2008

STOLARSKI, T., NAKASONE, Y., YOSHIMOTO, S., Enggineering analysis with ANSYS software, sec-ond edition, Oxford., Butterworth-Heineman:Elsevier.2018