Pengaruh Lip Thickness Turncated Nozzle Sudut Luar terhadap Karakteristik Api Difusi Concentric Jet Flow
DOI:
https://doi.org/10.21776/ub.jrm.2019.010.01.8Keywords:
Diffussion Flame, Concentric Jet Flow, Lip Thickness, Turncated NozzleAbstract
Diffusion combustion is a daily combustion process where is often used primarily in industrial systems. An optimal burner design is needed to get more efficient combustion results. Then the shape of the burner nozzle greatly affects the turbulence between the fuel and air which forms the flow recirculation zone. The flow recirculation zone functions to produce homogeneous mixing and get a more perfect combustion. Recirculation zones are formed to disrupt flow rates, causing vortices and backflow around the end of nozzle. This research uses burner concentric jet flow. The lip thickness of the outer angles turncated nozzle are used 16 mm, 12 mm, 8 mm, 4 mm, and 0 mm length variation To obtain flame stability, the lift off and blow off limits are used with variations in air velocity. Thermocouples are used to measure the flame temperature distribution. The numerical simulations are used to reinforce this study. The results showed that the characteristics of the concentric jet flow diffusion affected by the use of the lip thickness of the outer angles turncated nozzle. The highest concentric jet flow diffusion stability is at 16 mm nozzle. The highest concentric jet flow diffusion temperature is at 12 mm nozzle. Experimental and numerical simulations show the perfect combustion on the 12 mm lip thickness nozzle. This can be seen by direct photographs of blue-dominated flames and the visualization of the temperature contour distribution which is dominated by red.References
WARDANA, I.N.G., Bahan bakar dan teknologi pembakaran, Cetakan Pertama. PT. Danar Wijaya–Brawijaya University Press, Malang. 2008
FAIZAL, ELKA., “Pengaruh variasi lip thickness pada nozzle terpancung terhadap karakteristik api pembakaran difusi concentric jet flowâ€, Jurnal Rekayasa Mesin Vol.7, No.2, pp. 13-20. 2016
SASONGKO, M.N., WIJAYANTI, W., “Karakteristik api premiks biogas pada counterflow burnerâ€, in: Proceeding seminar nasional tahunan teknik mesin XIV (SNTTM XIV,) pp. 45-5, oktober. 2015
GLASSMAN, IRVIN and YETTER, R.A., Combustion, Fourth edition, San Diego-California. Elsevier. 2008081907303254
MANSOUR, M.S., et all., “Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burnerâ€,Elsevier:Combustion and flame, vol.000, pp. 1-21, Oktober.2016
WIDODO, A. S & TRI AGUNG R., Studi kestabilan api difusi double concentric jet flow (Pengaruh posisi, sudut kemiringan dan jumlah sirip swirl, Tesis, MT, Universitas Gadjah Mada, Yogyakarta, 2003
RANKIN, D.D., THERKELSEN, P., Lean combustion technology and control, 2nd Edition, Elsevier. 2016
BAANANTO, F., “Studi numerik pembakaran butana (C4H10) dalam meso scale combustor dengan perforated plateâ€, Jurnal Rekayasa Mesin, Vol.9, No.2, pp. 69-74, 2018
UTOMO, FW., NURSASONGKO, M.N., WIDYA, W., “Studi eksperimen penambahan swirl vanes pada api difusi coflow burnerâ€, in: Proceeding of the national symposium on thermofluids viii, pp. 120-125, Nov. 2016
SRINIVASARAO, T., MURTHY, I.D., LOVARAJU, P., RATHAKRISHNAN, E., “Effect of inner nozzle lip thickness on co-flow jet characteristicsâ€, De Gruyter:Int J Turbo Jet Eng, pp 1-7. Feb-ruari. 2016
PAYRI, R., VIERA, J.P., GOPALAKRISHAN, V., SZYMKOWICZ, P.G., “The effect of nozzle geometry over ignition delay and flame lift-off of reacting direct-injection sprays for three different fuelsâ€, Elsevier:Fuel vol. 199, pp. 76-90. 2017
BRAEUER, ANDREAS., “Shadowgraph and Schlieren Techniquesâ€, in: Supercritical Fluid Science and Technology, Vol. 7., chapter 4, Elsevier, 2015
SETTLESS, G.S., “Smartphone schlieren and shadowgraph imagingâ€, Optics and Lasers in Engineering: Elsevier, Vol. 000, pp. 1-13.2017
WICAKSONO, H., “Simulasi numeris karakteristik pembakaran ch4/co2/udara dan ch4/co2/o2 pada counterflow premixed burnerâ€, Jurnal Rekayasa Mesin Vol.8, No.2, pp. 91-99. 2017
VERSTEEG, H.K., MALALASEKERA, W., An introduction to computational fluid dynamics, Second edition, Harlow-London, Pearson Prentice Hall. 2008
STOLARSKI, T., NAKASONE, Y., YOSHIMOTO, S., Enggineering analysis with ANSYS software, sec-ond edition, Oxford., Butterworth-Heineman:Elsevier.2018
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.