The Effect of Inner Fan Blade Angle to The Ventilation Rate of The Turbine Ventilator

Authors

  • Priyo Agus Setiawan Politeknik Perkapalan Negeri Surabaya
  • Triyogi Yuwono Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.21776/ub.jrm.2018.009.03.10

Keywords:

Turbine Ventilator, Blade Angle, Flow Rate, NACA 0015

Abstract

Geographical location of Indonesia country has relative wind speed lower than the countries of turbine user e.g. Finland, United States of America, and other countries. Turbine ventilator can be used as ventilation within wind energy driver. The turbine ventilator generates drag force and causes rotated turbine ventilator. This rotation generates a negative pressure inside turbine ventilator and inhaled air. The previous study revealed that the performance of turbine ventilator signifies at low wind speed. Indonesia has low wind speed, thus it should be relevant to assemble the additional inner fan in turbine ventilator. The research method was applied by conducting the experiment to test the effectiveness of turbine ventilator placed above plenum 1 m x 1 m x 2.3 m. NACA 0015 was used for blade inner fan with a variety of inner fan blade angles 15o, 30o, 45o and 60o and varied wind speed to turbine ventilator 1.5, 3, 4.5 and 6 m/s. The turbine ventilator used in this research was about 18 inches in size to measure flow rate over the plenum. Inner fan rotated at 500 rpm. The results of the experiment reveal that rotating turbine ventilator increased the flow rate at an inner fan blade angle of 45 degrees and maximum ventilation rate was at inner fan blade of 45 degree angle.

Author Biography

Priyo Agus Setiawan, Politeknik Perkapalan Negeri Surabaya

Jurusan Teknik Permesinan Kapal

References

Awbi, Hazim, B., (1998),“Renewable and Sustainable Energy Reviews 2â€, Pergamon, chapter 7, hal. 157–188.

Lai, C., M., “Experiments on the ventilation efficiency of turbine ventilators used for building and factory ventilationâ€, Journal of Energy and Buildings, Vol. 35, Elsevier, hal. 927–932, 2003.

Lai, C., M., “Prototype development of rooftop turbine ventilator powered by hybrid wind and photovoltaic energyâ€, Journal of Energy and Buildings, Vol. 38, Elsevier, hal. 174–180, 2006.

Shun, Simon and Noor A. Ahmed (2008), Utilizing wind and solar energy as power sources for a hybrid ventilation device, Journal of Renewable Energy, Vol. 33, Elsevier, hal. 1392–1397.

Khana, Naghman, Yuehong, S., U., Saffa, B., Riffat and Colin Biggs (2008), “Performance testing and comparison of turbine ventilatorsâ€, Journal of Renewable Energy, Vol. 33, Elsevier, hal. 2441–2447.

Bleier and Frank, P., (1997), “Fan, handbook: Selection, aplication and designâ€, McGraw-Hill.

Aaron, S., K., Yuwono T., dan Widodo, W., A., (2011), “Investigasi eksperimental dan numerik terhadap aliran udara dalam ventilator turbine exhaust hood dan verifikasi kerjanya dalam menghasilkan energiâ€, Master’s thesis, Teknik Mesin ITS, Surabaya.

Fatah, M., Yuwono T., dan Widodo, W., A., (2011), “Studi experimental dan numerik pengaruh rasio panjang dan diameter turbine ventilator terhadap unjuk kerja turbine ventilatorâ€, Master’s thesis, Teknik Mesin ITS, Surabaya.

Rasamimanana, A., F., Yuwono T., dan Widodo, W., A., (2011), “Studi eksperimental dan numerik aliran udara melalui turbine ventilator dengan exhaust hood type nozzleâ€, Master’s thesis, Teknik Mesin ITS, Surabaya.

Setiawan, P., A. dan Subekti, A.,â€Simulasi Numerik Terbentuknya Reattachment Length Terhadap Perubahan Tinggi Obstacle Pada Tee Ductâ€, Inovtek Polbeng 7 (2), 188-193, 2017.

Widiarti, Y., Rosydah, B., M., dan Setiawan, P., A.,â€Evaluasi Ventilasi Alami Dengan Simulasi Numerik Computational Fluid Dynamics Sebagai Upaya Pengendalian K3 Pada Bengkel Las Politeknik Perkapalan Negeri Surabayaâ€, Jurnal Teknik Mesin 21 (2), 2014.

Downloads

Published

2019-01-01

Issue

Section

Articles