Unjuk Kerja Turbin Air Kaki Angsa Next-G dengan Variasi Lebar Sudu dan Jumlah Kaki Sudu Menggunakan Pendekatan Komputasional

Authors

  • Muhamad Taufiq Hidayat Universitas Negeri Malang
  • Retno Wulandari Universitas Negeri Malang

DOI:

https://doi.org/10.21776/ub.jrm.2018.009.02.5

Keywords:

Water Turbine Goose Legs Next-G, Computational Fluids Dynamics

Abstract

This study to determine the efficiency of next-G geese foot turbine, the Angled Watermill is utilized in rural or remote areas, with potential rivers and local people to easily adapt the material. It is necessary to design a new turbine that can able to extract energy from free fluid flow or zero headwater power resources. The design and material of the design were done using Computational Fluid Dynamics (CFD) software. The method is to know the most optimal modification of goat water turbine design from the variation in width and number of feet of Next-G geese foot mill legs as follows: (1) 600; (2) 700 mm; (3) 750 mm, for the number of legs used 4 pieces, 6 pieces, 8 legs. The results of development the Next-G goose foot wheel mill blade is the moment pressure value increased for the width of the water wheel blade 750 mm, and the moment pressure decreases to 600 mm. The number of feet 4 blade the pressure moment is increased and decreasing for the number of feet of 8 blade. The optimum moment pressure is applied to the width 750 mm waterwheel blade and the number of 4 impeller feet.

References

Ai Yuningsih. 2011, Potensi Energi Arus Laut untuk Pembangkit Listrik di Kawasan Pesisir Flores Timur NTT. Ilmu dan Teknologi Kelautan Tropis. Vol.3, No.1, Hal. 13-15.

Agus,S. 2000, Prospek Penggunaan Teknologi Bersih Untuk Pembangkit Listrik dengan Bahan Bakar Batu Bara di Indonesia, Teknologi Lingkungan. Vol.3, No.1 Hal 90-95.

Thoharudin, 2014, Optimasi Tinggi Tekan Dan Efisiensi Pompa Sentrifugal Dengan Perubahan Jumlah Sudu Impeler dan Sudut Sudu Keluar Impeler (β2) Menggunakan Simulasi Computational Fluid Dynamics, Yogyakarta Seminar Nasional Aplikasi Sains dan Teknologi 2014, 1st AKPRIND.

Djajusman, H. 2011. Kincir Air Kaki Angsa. M&E. Vol.9, No.4

Gorban, A., Braverman, M and Silantyev, V. 2002. Modified Kirchhoff Flow with a Partially Penetrable Obstacle and Its Application to the Efficiency of Free Flow Turbines. Mathematical and Computer Modelling 35:1371-1375.

Gorban, A.N., Garlov, A.m. And Silantyev, V.M. 2001. Limits of the Turbine Efficiency for Free Fluid Flow. Journal of Energy Resources Technology, Vol.123. 2001.

Hau E, 2006, Wind Turbines : Fundamentals Technologies, Application, Economics.2nd Edition, Springer-Verlag Berlin Heidelberg.

Retno Wulandari, 2015, Pemanfaatan Energi Air Pedesaan Melalui Pengembangan Desain Sudu Kincir Air Kaki Angsa Next-G.

Downloads

Published

2018-09-07

How to Cite

Hidayat, M. T., & Wulandari, R. (2018). Unjuk Kerja Turbin Air Kaki Angsa Next-G dengan Variasi Lebar Sudu dan Jumlah Kaki Sudu Menggunakan Pendekatan Komputasional. Jurnal Rekayasa Mesin, 9(2), pp. 99–102. https://doi.org/10.21776/ub.jrm.2018.009.02.5

Issue

Section

Articles