OPTIMIZATION OF TENSILE STRENGTH OF EMPTY OIL PALM FRUIT BUNCH FIBER REINFORCED COMPOSITES USING GENETIC ALGORITHMS

Authors

  • Abdul Rahim Universitas Muhammadiyah Kalimantan Timur
  • Agus Mujianto Universitas Muhammadiyah Kalimantan Timur
  • Richie Feriyanto Universitas Muhammadiyah Kalimantan Timur
  • Hery Tri Waloyo Universitas Muhammadiyah Kalimantan Timur

DOI:

https://doi.org/10.21776/jrm.v15i3.1898

Keywords:

Natural Fiber, Genetic Algorithm, Tensile Strength, Optimization

Abstract

The use of natural materials such as oil palm empty fruit bunch fibers can provide a solution to increase value-added and manage plantation waste. Fibers are combined with a matrix to create composite materials. Instead of glass fibers, environmentally friendly natural fibers serve as the reinforcement in the composite material. Implementing natural fiber composites must consider the primary construction requirement, which is tensile strength. Artificial intelligence like genetic algorithms (GA) can simplify and reduce costs in the search for optimal values in composite material engineering. Data is obtained through experimental testing prepared samples and subsequently used as input for GA. The input parameters consist of three variables such as soaking time, volume fraction, and fiber length. The output of the optimization process is tensile strength. The maximum tensile strength has already been achieved with genetic crossover by the 125th generation. Based on GA calculations, the optimal parameters obtained are soaking time of 6.2 hours, volume fraction of 29.6%, and fiber length of 6.9 cm. The predicted optimal tensile strength value is 4.78 MPa.

References

C. D. Patone, R. J. Kumaat, D. Mandeij, J. E. Pembangunan, F. Ekonomi, and D. Bisnis, “Analisis Daya Saing Ekspor Sawit Indonesia Ke Negara Tujuan Ekspor Tiongkok Dan India.”

M. A. Shakir, M. I. Ahmad, F. Z. Mansur, N. K. Ramli, and S. A. Zaki, “Processing of Waste Biomass: Production of Composite Thermal Insulation Panels from Empty Fruit Bunch and Spent Mushroom Substrates,” Waste Biomass Valorization, Jul. 2024, doi: 10.1007/s12649-024-02453-z.

M. N. A. Yaakob, N. Salim, S. N. H. Mustapha, I. I. Misnon, M. H. A. Rahim, and R. Roslan, “Efficient lignin extraction from oil palm empty fruit bunches using guanidine-based deep eutectic solvents under microwave assistance,” Ind Crops Prod, vol. 218, Oct. 2024, doi: 10.1016/j.indcrop.2024.118968.

M. K. F. Abdul Rahman et al., “Energy absorption behavior of oil palm empty fruit bunch fiber-reinforced composites subjected to low-velocity impact,” Journal of Reinforced Plastics and Composites, vol. 43, no. 9–10, pp. 475–489, May 2024, doi: 10.1177/07316844231165483.

R. Sukmawan, Kusmono, A. P. Rahmanta, and L. H. Saputri, “The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite,” Int J Adhes Adhes, vol. 114, Apr. 2022, doi: 10.1016/j.ijadhadh.2022.103095.

R. Sukmawan, Kusmono, A. P. Rahmanta, and L. H. Saputri, “The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite,” Int J Adhes Adhes, vol. 114, Apr. 2022, doi: 10.1016/j.ijadhadh.2022.103095.

M. K. Faizi et al., “Tensile characterizations of oil palm empty fruit bunch (Opefb) fibers reinforced composites in various epoxy/fiber fractions,” Biointerface Res Appl Chem, vol. 12, no. 5, pp. 6148–6163, Oct. 2022, doi: 10.33263/BRIAC125.61486163.

B. Bakri et al., “Tensile Strength and Water Absorption of Oil Palm Mesocarp Fiber Reinforced Polyester Composites: Effect of Volume Fraction of Fiber,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2022. doi: 10.1088/1755-1315/1075/1/012003.

Z. Luo et al., “Highly enhancing electromagnetic properties in Fe-Si/MnO-SiO2 soft magnetic composites by improving coating uniformity,” Advanced Powder Technology, vol. 32, no. 12, pp. 4846–4856, Dec. 2021, doi: 10.1016/j.apt.2021.10.039.

X. Li, Z. Jin, S. Li, D. Yu, J. Zhang, and W. Zhang, “Li-ion battery state of health prediction through metaheuristic algorithms and genetic programming,” Energy Reports, vol. 12, pp. 368–380, Dec. 2024, doi: 10.1016/j.egyr.2024.06.038.

S. Jamal, J. Pasupuleti, and J. Ekanayake, “A rule-based energy management system for hybrid renewable energy sources with battery bank optimized by genetic algorithm optimization,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-54333-0.

H. E. Sabzi et al., “Genetic design of precipitation-hardening stainless steels for additive manufacturing,” Acta Mater, vol. 274, Aug. 2024, doi: 10.1016/j.actamat.2024.120018.

M. Wang, L. Zhang, and C. Fu, “Prediction and design optimization of mechanical properties for rubber fertilizer hose reinforced with helically wrapped nylon,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-64233-y.

F. Rueda et al., “Modelling Failure Of Polymers: An Optimization Strategy Based on Genetic Algorithms and Instrumented Impact Tests,” Journal of Dynamic Behavior of Materials, vol. 7, no. 4, pp. 538–552, Dec. 2021, doi: 10.1007/s40870-021-00297-5.

L. Gharsalli and Y. Guérin, “Mechanical sizing of a composite launcher structure by hybridizing a genetic algorithm with a local search method,” Composites Part C: Open Access, vol. 5, Jul. 2021, doi: 10.1016/j.jcomc.2021.100125.

Ł. Domagalski and I. Kowalczyk, “Genetic Algorithm Optimization of Beams in Terms of Maximizing Gaps between Adjacent Frequencies,” Materials, vol. 16, no. 14, Jul. 2023, doi: 10.3390/ma16144963.

J. Lee, D. Park, K. Park, H. Song, T. S. Kim, and S. Ryu, “Optimization of grid composite configuration to maximize toughness using integrated hierarchical deep neural network and genetic algorithm,” Mater Des, vol. 238, Feb. 2024, doi: 10.1016/j.matdes.2024.112700.

A. Tiwari, N. Kumar, and M. K. Banerjee, “Applications of genetic algorithm in prediction of the best achievable combination of hardness and tensile strength for graphene reinforced magnesium alloy (AZ61) matrix composite,” Results in Control and Optimization, vol. 14, Mar. 2024, doi: 10.1016/j.rico.2023.100334.

X. Li, X. Han, S. Duan, and G. R. Liu, “A Two-Stage Genetic Algorithm for Molding Parameters Optimization for Minimized Residual Stresses in Composite Laminates During Curing,” Applied Composite Materials, vol. 28, no. 4, pp. 1315–1334, Aug. 2021, doi: 10.1007/s10443-021-09912-z.

J. Kaima, I. Preechawuttipong, R. Peyroux, P. Jongchansitto, and T. Kaima, “Experimental investigation of alkaline treatment processes (NaOH, KOH and ash) on tensile strength of the bamboo fiber bundle,” Results in Engineering, vol. 18, Jun. 2023, doi: 10.1016/j.rineng.2023.101186.

N. Gayathri, N. Pragadish, B. B. Bright, and S. Santhosh Kumar, “Effect of volume fraction of cashew nut de-oiled husk biosilica on load-bearing properties of ramie fiber–reinforced vinyl ester resin composite,” Biomass Convers Biorefin, 2023, doi: 10.1007/s13399-023-04789-3.

S. Krishnakumar, V. Mohanavel, R. Venkatesh, and K. Balasubramanian, “Enhancement of tribology behaviour by the addition of different fiber length of pineapple fiber reinforced polyester composite,” Journal of Mechanical Science and Technology, vol. 38, no. 1, pp. 201–206, Jan. 2024, doi: 10.1007/s12206-023-1217-8.

Downloads

Published

2024-12-15

How to Cite

Rahim, A., Mujianto, A., Feriyanto, R., & Waloyo, H. T. (2024). OPTIMIZATION OF TENSILE STRENGTH OF EMPTY OIL PALM FRUIT BUNCH FIBER REINFORCED COMPOSITES USING GENETIC ALGORITHMS. Jurnal Rekayasa Mesin, 15(3), 1743–1750. https://doi.org/10.21776/jrm.v15i3.1898

Issue

Section

Articles