EXPERIMENTAL STUDY OF COOLING FLUID VARIATION ON THE THERMOELECTRIC HOT SIDE ON THERMOELECTRIC VACCINE COOLER BOX PERFORMANCE

Authors

  • Novreza Pratama Universitas Sebelas Maret
  • Imron Rosyadi Universitas Sultan Ageng Tirtayasa
  • Hadi Wahyudi Universitas Sultan Ageng Tirtayasa
  • M. Haykal Fasya Universitas Sultan Ageng Tirtayasa

DOI:

https://doi.org/10.21776/jrm.v15i3.1850

Keywords:

Thermoelectric Cooler, Cold Chain, COP, Heatsink

Abstract

The advanced countries make health a high priority and collaborate to create a better quality of life. Vaccination is a critical component of global health. Vaccines must be stored at a constant temperature of 2-8℃, to maintain the viability of the vaccine cold chain. Thermoelectric cooling systems (TECs) are a solution that is simple, lightweight, low cost, and portable. Excessively high hot-side temperatures can be detrimental to operators and the environment during distribution processes. The application of fans and circulating fluid can reduce the TEC hot-side temperature. The lowest TEC temperature difference of 30.26℃ is achieved by using only a fan. The minimum hot side of 31.28℃ is achieved with the fan and circulating water model. The minimum cold side can be increased to 0.53℃ with the fan and circulating radiator coolant model. All tests were at vaccine-eligible temperatures. The best COP of 0.14 can be reached in this study.

Author Biographies

Imron Rosyadi, Universitas Sultan Ageng Tirtayasa

Senior Researcher in Mechanical Engineering, Sultan Ageng Tirtayasa University

Hadi Wahyudi, Universitas Sultan Ageng Tirtayasa

Senior Researcher in Mechanical Engineering, Sultan Ageng Tirtayasa University

M. Haykal Fasya, Universitas Sultan Ageng Tirtayasa

Mechanical Engineering student of Sultan Ageng Tirtayasa University

References

dr. Makarim F.R., “Kewajiban Imunisasi Dasar, Manfaat dan Keamanan,” Riptek, vol. Vol II, No, no. 2, pp. 87–96, 2017, [Online]. Available: https://riptek.semarangkota.go.id/index.php/riptek/article/view/30/31

V. Leung et al., “Thermal Stabilization of Viral Vaccines in Low-Cost Sugar Films,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1038/s41598-019-44020-w.

N. Pratama, “Pengaruh Material Berubah Fasa (Pcm) Sebagai Media Penyimpan Panas Terhadap Karakteristik Cooling Box Peltier,” JTM-ITI (Jurnal Tek. Mesin ITI), vol. 6, no. 1, p. 1, 2022, doi: 10.31543/jtm.v6i1.712.

N. C. S. Simões, F. dos S. Isabela, and V. C. Oliveira, “Analysis of vaccine losses by temperature changes in a Health Region from Minas Gerais State, Brazil,” ABCS Heal. Sci. CS, pp. 1–6, 2020.

J. Brahmbhatt, “A Design of Thermoelectric Cooler and Optimization,” vol. 2, no. March, pp. 1–8, 2016.

S. Chatterjee and K. G. Pandey, “Thermoelectric cold-chain chests for storing/transporting vaccines in remote regions,” Appl. Energy, vol. 76, no. 4, pp. 415–433, 2003, doi: 10.1016/S0306-2619(03)00007-2.

E. Reid et al., “Design and Testing of a Thermoelectrically- Cooled Portable Vaccine Cooler,” J. Young Investig., vol. 35, no. 2, pp. 50–55, 2018, doi: 10.22186/jyi.35.2.50-55.

B. Ohara, R. Sitar, J. Soares, P. Novisoff, A. Nunez-Perez, and H. Lee, “Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities,” J. Electron. Mater., vol. 44, no. 6, pp. 1614–1626, 2015, doi: 10.1007/s11664-014-3491-9.

A. K. Mainil, A. Aziz, and M. Akmal, “Portable Thermoelectric Cooler Box Performance with Variation of Input Power and Cooling Load,” Aceh Int. J. Sci. Technol., vol. 7, no. 2, pp. 85–92, 2018, doi: 10.13170/aijst.7.2.8722.

M. Mirmanto, S. Syahrul, and Y. Wirdan, “Experimental performances of a thermoelectric cooler box with thermoelectric position variations,” Eng. Sci. Technol. an Int. J., vol. 22, no. 1, pp. 177–184, 2019, doi: 10.1016/j.jestch.2018.09.006.

N. Putra, “Design, manufacturing and testing of a portable vaccine carrier box employing thermoelectric module and heat pipe,” J. Med. Eng. Technol., vol. 33, no. 3, pp. 232–237, 2009.

J. Eko Poetro and M. B. Rahmat, “KONSERVASI ENERGI PADA BTS (BASE TRANSCEIVER STATION) MENGGUNAKAN SISTEM PENDINGIN ARUS SEARAH (DC COOLER),” J. Tek. MESIN, no. 2, pp. 82–98, 2012.

A. Winarta, I. Made Rasta, L. P. Ike Midiani, I. Wayan Adi Subagia, and A. A. N. Gde Sapteka, “Experimental study of thermoelectric cooler box using heat sink with u-shape heat pipe and methanol working fluid,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012033, 2021, doi: 10.1088/1757-899x/1034/1/012033.

W. Y. Chen, X. L. Shi, J. Zou, and Z. G. Chen, “Thermoelectric Coolers: Progress, Challenges, and Opportunities,” Small Methods, vol. 6, no. 2, pp. 1–21, 2022, doi: 10.1002/smtd.202101235.

R. Septiana, I. Roihan, and J. Karnadi, “Calibration of K-Type Thermocouple and MAX6675 Module With Reference DS18B20 Thermistor Based on Arduino DAQ,” Pros. SNTTM XVIII, pp. 9–10, 2019.

Y. A. R. Prasetyo, “Sistem Pendingin Hybrid Thermoelectric Cooler dan Phase Change Material (PCM) pada Cool Box,” 2017. [Online]. Available: http://repository.its.ac.id/44951/

J. P. Holman, “Heat transfer.” McGraw Hill Higher Education, 2010.

Downloads

Published

2024-12-15

How to Cite

Pratama, N., Rosyadi, I., Wahyudi, H., & Fasya, M. H. (2024). EXPERIMENTAL STUDY OF COOLING FLUID VARIATION ON THE THERMOELECTRIC HOT SIDE ON THERMOELECTRIC VACCINE COOLER BOX PERFORMANCE. Jurnal Rekayasa Mesin, 15(3), 1799–1808. https://doi.org/10.21776/jrm.v15i3.1850

Issue

Section

Articles