PERANCANGAN ALAT PENCEKAM UNTUK PEMESINAN POLYURETHANE FOAM PADA PROSES FACE MILL CUTTING MESIN CNC ROUTER 3 AXIS DENGAN METODE VDI 2221
DOI:
https://doi.org/10.21776/jrm.v15i3.1798Keywords:
Polyurethane Foam, Clamping Device, VDI 2221, 3D PrintingAbstract
Due to the highly brittle structure of polyurethane (PU) foam, a specialized clamping mechanism is required to consider the material's strength and hardness to avoid damaging the workpiece and to withstand the cutting forces during milling and machining. Using a polymer as an alternative for creating clamping tools with characteristics similar to PU foam offers a promising solution. The slightly harder polymer material is expected to address the need for a gripping tool that will not harm the PU foam upon application. The VDI 2221 method, a structured approach to the design and coordination of evolving design techniques, is employed in this study. The advantage of this methodology lies in its ability to adapt continuously through research. A comparative analysis of two design models produced via 3D printing reveals that Design 5 exhibits superior strength under increased stress. Moreover, Design 5 is more effective in gripping the workpiece, as a single gripper can withstand cutting forces from two directions simultaneously, reducing material deformation. This advancement is expected to minimize the risk of material damage during the machining process. This research's novelty lies in applying an optimized polymer clamping device for PU foam, ensuring improved performance and reduced damage during machining.
References
R. Stewart, “New mould technologies and tooling materials promise advances for composites,” Reinf. Plast., vol. 54, no. 3, pp. 30–36, 2010, doi: 10.1016/S0034-3617(10)70110-7.
E. Brinksmeier and J. Sölter, “Prediction of shape deviations in machining,” CIRP Ann. - Manuf. Technol., vol. 58, no. 1, pp. 507–510, 2009, doi: 10.1016/j.cirp.2009.03.123.
N. K. Naulakha, D. Thapa, and S. K. R. B. | N. Karthik, “An Overview on Latest Trend of Face Milling Operation,” Int. J. Trend Sci. Res. Dev., vol. Volume-2, no. Issue-4, pp. 1799–1802, 2018, doi: 10.31142/ijtsrd14446.
C. Costa, F. J. G. Silva, R. M. Gouveia, and R. P. Martinho, “Development of hydraulic clamping tools for the machining of complex shape mechanical components,” Procedia Manuf., vol. 17, pp. 563–570, 2018, doi: 10.1016/j.promfg.2018.10.097.
S. Zhang, X. Ai, J. Li, and X. Fu, “Failure analysis on clamping bolt of milling cutter for high-speed machining,” Int. J. Mach. Mach. Mater., vol. 1, no. 3, pp. 343–353, 2006, doi: 10.1504/IJMMM.2006.011369.
S. Ramesh, S. Denis Ashok, N. K. Naulakha, C. R. Adithyakumar, M. Lohith Kumar Reddy, and S. K. Reddy, “Energy Efficient Hydraulic Clamping System using Variable Frequency Drive in a CNC Machine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 376, no. 1, 2018, doi: 10.1088/1757-899X/376/1/012124.
N. Ab Wahab, J. L. Martius, A. K. Nordin, M. Zahari, S. M. Najib, and M. Saifizi, “Design And Development Of Portable Vacuum Clamping (Pvac Clamp) For Tool Room,” J. Phys. Conf. Ser., vol. 1529, no. 4, 2020, doi: 10.1088/1742-6596/1529/4/042027.
E. Brinksmeier, J. Sölter, and C. Grate, “Distortion engineering - identification of causes for dimensional and form deviations of bearing rings,” CIRP Ann. - Manuf. Technol., vol. 56, no. 1, pp. 109–112, 2007, doi: 10.1016/j.cirp.2007.05.028.
T. Nishihara, S. Okuyama, S. Kawamura, and S. Hanasaki, “Study on the geometrical accuracy in surface grinding: —Thermal deformation of workpiece in traverse grinding—,” J. Japan Soc. Precis. Eng., vol. 59, no. 7, pp. 1145–1150, 1993, doi: 10.2493/jjspe.59.1145.
J. M. Svanberg and J. A. Holmberg, “An experimental investigation on mechanisms for manufacturing induced shape distortions in homogeneous and balanced laminates,” Compos. - Part A Appl. Sci. Manuf., vol. 32, no. 6, pp. 827–838, 2001, doi: 10.1016/S1359-835X(00)00173-1.
R. Hafner, F. Pušavec, L. Čerče, and J. Kopač, “Influence of milling process on machined surface of porous polyurethane (PU) foam,” Teh. Vjesn. - Tech. Gaz., vol. 23, no. 4, pp. 1089–1093, 2016, doi: 10.17559/tv-20150729135016.
L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. in Cambridge Solid State Science Series. Cambridge University Press, 1997. doi: 10.1017/CBO9781139878326.
S. Selvakumar, K. P. Arulshri, and K. P. Padmanaban, “Clamping Force Optimization for Minimum Deformation of Workpiece by Dynamic Analysis of Workpiece-fixture System,” World Appl. Sci. J., vol. 11, no. 7, pp. 840–846, 2010.
J. H. Yu, Z. T. Chen, and Z. P. Jiang, “A control process for machining distortion by using an adaptive dual-sphere fixture,” Int. J. Adv. Manuf. Technol., vol. 86, no. 9–12, pp. 3463–3470, 2016, doi: 10.1007/s00170-016-8470-2.
G. . Pahl, W. . Beitz, J. Feldhusen, and K. H. . Grote, Engineering design. [electronic book] : a systematic approach: University of Liverpool Library. 2007. [Online]. Available: https://doi.org/10.1007/978-1-84628-319-2%0Ahttps://extras.springer.com/?query=978-1-84628-318-5
F. Alizon, S. B. Shooter, and H. J. Thevenot, “Design structure matrix flow for improving identification and specification of modules,” Proc. ASME Des. Eng. Tech. Conf., vol. 2006, pp. 1–13, 2006.
“CP11-FREE JAW VISE|CNC Fixture, Jaw, Tombstone Manufacturer | Leave Industrial.” Accessed: Nov. 10, 2023. [Online]. Available: https://www.leave-fixture.com/en-US/pfilter209_36-cp11
“GN 918 Eccentrical cams | Elesa+Ganter.” Accessed: Nov. 10, 2023. [Online]. Available: https://www.elesa-ganter.com/en/www/Machine-elements--Eccentrical-cams--GN918
“Item # 30804, Step Clamps On TE-CO.” Accessed: Nov. 10, 2023. [Online]. Available: https://catalog.te-co.com/item/clamps-clamping-accessories2/step-clamps/30804
“Detail.” Accessed: Nov. 10, 2023. [Online]. Available: http://www.vertex-tw.com.tw/products/print_detail.php?cid=54
M. Fargnoli, E. Rovida, and R. Troisi, “The morphological matrix: Tool for the development of innovative design solutions,” Proc. ICAD, pp. 1–6, 2006, [Online]. Available: http://www.axiod.com/technology/icad/icad2006/icad2006_21.pdf
Ferdinand P. Beer and J. T. D. Jr., E. Russell Johnston, “Mechanics Of Materials SI Unit Fourth Edition.” pp. 1–796, 2006.
C. Kim and C. H. Kim, “Universal testing apparatus implementing various repetitive mechanical deformations to evaluate the reliability of flexible electronic devices,” Micromachines, vol. 9, no. 10, 2018, doi: 10.3390/mi9100492.
M. Rizal, U. Aulia, and R. Yudiansyah, “Development of a Portable Universal Testing Machine for Investigating the Mechanical Properties of Medium-Strength Materials,” Aceh Int. J. Sci. Technol., vol. 12, no. 1, pp. 25–32, 2023, doi: 10.13170/aijst.12.1.31159.
Annual Book of ASTM Standards, “ASTM D790-61.pdf.” pp. 1–6, 1961. [Online]. Available: https://lhc-div-mms.web.cern.ch/tests/MAG/docum/Radiation_resistance/Literature/Standards/ASTM D790-61.pdf
S. Gudlavalleti, B. P. Gearing, and L. Anand, “Flexure-based micromechanical testing machines,” Exp. Mech., vol. 45, no. 5, pp. 412–419, 2005, doi: 10.1177/0014485105057758.
E. Szewczak, A. Winkler-Skalna, and L. Czarnecki, “Sustainable test methods for construction materials and elements,” Materials (Basel)., vol. 13, no. 3, 2020, doi: 10.3390/ma13030606.
E. Lucon, Testing of Small-Sized Specimens, vol. 1. Elsevier, 2014. doi: 10.1016/B978-0-08-096532-1.00110-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Archi Kun Cahyo Utomo, Ubaidillah, Wijang Wisnu Raharjo, Fitrian Imaduddin, Dikky Kusuma Wijaya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.