STUDI EKSPERIMEN PENINGKATAN PERPINDAHAN KALOR FLUIDA NANO CuO /AIR PADA VERTICAL HELICAL MICROFIN TUBE

Authors

  • Budi Kristiawan Universitas Sebelas Maret
  • Ilham Khoirudin
  • Agung Tri Wijayanta
  • Syamsul Hadi
  • Hilbran Tama Dida Effendi

DOI:

https://doi.org/10.21776/jrm.v15i3.1715

Keywords:

Heat Exchanger, Microfin Tube, Nanofluids, Heat Transfer

Abstract

The way to increase heat transfer is to use nanofluids and expand the heat transfer area. This research studied the thermal performance, convection heat change coefficient, and pressure drop in a double pipe heat exchanger experimentally in a vertically arranged helical microfin tube heat exchanger. Hot water flows on the side of the annulus. In contrast, nanofluid CuO/distilled water concentration of 0.05 vol% flows laminarly in the inner pipe of the microfin tube with cross-flow and parallel-flow arrangements. The result is convection heat transfer coefficient enhancement and thermal performance factor compared to the base fluid. Counter flow improves heat transfer better than parallel flow. This research contributes to the use of helical microfin and nanofluids to increase heat transfer in heat exchangers used in industrial processes.

Author Biography

Budi Kristiawan, Universitas Sebelas Maret

Program Studi Teknik Mesin UNS terakreditasi BAN PT dengan  akreditasi "A"

References

A. R. Anvari and K. Javaherdeh, “Experimental investigation of Newtonian and non-Newtonian liquid flow in wavy and straight mini-channel cross-flow plate heat exchangers,” Journal of Mechanical Engineering, vol. 65, no. 1, pp. 41–49, 2019, doi: 10.5545/sv-jme.2018.5301.

A. T. Wijayanta, I. Yaningsih, M. Aziz, T. Miyazaki, and S. Koyama, “Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger,” Appl Therm Eng, vol. 145, pp. 27–37, Dec. 2018, doi: 10.1016/j.applthermaleng.2018.09.009.

L. Li, W. Cui, Q. Liao, X. Mingdao, T. C. Jen, and Q. Chen, “Heat transfer augmentation in 3D internally finned and microfinned helical tube,” Int J Heat Mass Transf, vol. 48, no. 10, pp. 1916–1925, May 2005, doi: 10.1016/j.ijheatmasstransfer.2004.12.003.

N. A. Bin-Abdun et al., “The Comparison between the Performance of Water and CuO/Water nanofluid in Improving the Heat Transfer of Small Spaces,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Nov. 2018. doi: 10.1088/1757-899X/429/1/012073.

G. Li, L. Huang, and L. Tao, “Experimental investigation of refrigerant condensation heat transfer characteristics in the horizontal microfin tubes,” Appl Therm Eng, vol. 123, pp. 1484–1493, 2017, doi: 10.1016/j.applthermaleng.2017.05.080.

M. S. Khan and T. Dil, “Heat transfer enhancement of automobile radiator using H2O-CuO nanofluid,” AIP Adv, vol. 7, no. 4, Apr. 2017, doi: 10.1063/1.4982669.

J. Zhang, Y. Diao, Y. Zhao, and Y. Zhang, “An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques,” Exp Therm Fluid Sci, vol. 81, pp. 21–32, Feb. 2017, doi: 10.1016/j.expthermflusci.2016.10.001.

L. G. Asirvatham, N. Vishal, S. K. Gangatharan, and D. M. Lal, “Experimental study on forced convective heat transfer with low volume fraction of CuO/Water nanofluid,” Energies (Basel), vol. 2, no. 1, pp. 97–119, 2009, doi: 10.3390/en20100097.

Q. Liu et al., “Experimental investigation on the use of CuO/water nanofluid in horizontal spiral-coil ground heat exchanger,” International Journal of Refrigeration, vol. 149, pp. 204–223, May 2023, doi: 10.1016/j.ijrefrig.2022.12.011.

B. Kristiawan, A. I. Rifa’i, K. Enoki, A. T. Wijayanta, and T. Miyazaki, “Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube,” Powder Technol, vol. 376, pp. 254–262, Oct. 2020, doi: 10.1016/j.powtec.2020.08.020.

A. Celen, A. S. Dalkilic, and S. Wongwises, “Experimental analysis of the single phase pressure drop characteristics of smooth and microfin tubes,” International Communications in Heat and Mass Transfer, vol. 46, pp. 58–66, Aug. 2013, doi: 10.1016/j.icheatmasstransfer.2013.05.010.

Y. R. Sekhar, K. V. Sharma, R. T. Karupparaj, and C. Chiranjeevi, “Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications,” in Procedia Engineering, Elsevier Ltd, 2013, pp. 1474–1484. doi: 10.1016/j.proeng.2013.09.229.

K. V. Warghat and H. D. Jagdale, “Heat transfer enhancement in concentric tube heat exchanger with tangential injection and twisted tape inserts,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020. doi: 10.1088/1742-6596/1473/1/012032.

Z. Ma, A. Zhou, J. Zhang, and Y. Wang, “Experimental investigation on the friction characteristics of water–ethylene glycol mixture flow in internal helical finned horizontal tubes,” Exp Therm Fluid Sci, vol. 89, pp. 1–8, 2017, doi: 10.1016/j.expthermflusci.2017.07.019.

H. Hajabdollahi and M. Shafiey Dehaj, “Experimental study and optimization of friction factor and heat transfer in the fin and tube heat exchanger using nanofluid,” Applied Nanoscience (Switzerland), vol. 11, no. 2, pp. 657–668, Feb. 2021, doi: 10.1007/s13204-020-01616-3.

Downloads

Published

2024-12-15

How to Cite

Kristiawan, B., Khoirudin , I., Wijayanta, A. T., Hadi , S., & Effendi, H. T. D. (2024). STUDI EKSPERIMEN PENINGKATAN PERPINDAHAN KALOR FLUIDA NANO CuO /AIR PADA VERTICAL HELICAL MICROFIN TUBE . Jurnal Rekayasa Mesin, 15(3), 1471–1481. https://doi.org/10.21776/jrm.v15i3.1715

Issue

Section

Articles