GAYA ANGKAT DAN GAYA HAMBAT SAYAP PUNA MODEL NACA 0015 MENGGUNAKAN SIMULASI ANSYS FLUENT

Authors

  • Muhammad Dzulfikar
  • Helmy Purwanto
  • Muhammad Abdul Wahid
  • Salim Rahmatulloh

DOI:

https://doi.org/10.21776/jrm.v15i3.1707

Keywords:

Airfoil NACA 0015, Lift Force, Drag Force, Wing, CFD (Computational Fluid Dynamic)

Abstract

The hi-speed computational using simulation software has emerged for the calculation of force dynamic. Albeit the significant progress in the computational method, the aerodynamic of flying wing are somewhat elusive. Herein, we performed a detailed computation of the lift and drag behaviors of NACA-0015 flying wing modelled through the surveillance speeds and difference angle of attack using Ansys. This study aims to determine and analyze the maximum angle of attack, lift force and drag force at speeds of 10 m/s, 30 m/s, and 50 m/s. The method used is analysis using CFD (Computational Fluid Dynamic) simulation software. The simulation uses Ansys Fluent to determine the aerodynamic characteristics, after varying the angle of attack at a predetermined speed on an airplane (unmanned aerial vehicle) wing with a NACA 0015 airfoil. The results of the research that has been carried out are the maximum angle of attack at a predetermined speed variation (Re = 0.2 x 105 to 1.0 x 105), namely 25° at each angle of attack, with details of a speed of 50 m/s getting the highest lifting force, around 38,72 N and drag force in the area 6,49 N.

References

R. Hidayat and R. Mardiyanto, “Pengembangan Sistem Navigasi Otomatis Pada UAV (Unmanned Aerial Vehicle) dengan GPS (Global Positioning System) Waypoint,” J. Tek. ITS, vol. 5, no. 2, pp. 898–903, 2016, doi: http://dx.doi.org/10.12962/j23373539.v5i2.16342.

O. Zikanov, Essential Computational Fluid Dynamics. New Jersey: John Wiley & Sons, Inc., 2010.

M. Schäfer, Computational Engineering – Introduction to Numerical Methods, English ed. Darmstadt: Springer International Publishing, 2006. doi: 10.1007/978-3-030-76027-4.

M. F. Hidayat, Teori Sayap Pesawat Terbang, 1st ed., no. Desember. Jakarta: Universitas 17 Agustus 1945 Jakarta, 2018.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Second Edi. Loughborough: Pearson Education Limited, 207AD.

A. Pope, Basic Wing and Airfoil Theory, First. Atlanta: the McGraw-Hill Book Company, Inc., 1951.

M. M. Lubis, “Software Berbasis Computional Fluid Dinamic,” e-Dinamis, vol. II, no. 2, pp. 23–33, 2012.

Dicky Kurniawan, “Analisis Aerodinamika pada Sayap V-Tail UAV MALE (Unmanned Aerial Vehicle Medium Altitude Long Endurance) Akibat Laju Aliran Udara dengan Menggunakan Software Computational Fluid Dynamic (CFD),” Universitas Islam Indonesia, 2018.

E. L. Houghton, P. W. Carpenter, S. H. Collicott, and D. T. Valentine, Aerodynamics for Engineering Students, Seventh Ed. Oxford: Butterworth-Heinemann, 2016.

K. Hidayat et al., “Pemilihan Airfoil Pesawat Terbang Tanpa Awak LSU-05 NG dengan Menggunakan Analytical Hierarchy Process,” J. Teknol. Dirgant., vol. 17, no. 2, p. 141, 2019, doi: 10.30536/j.jtd.2019.v17.a3161.

A. M. Kuethe and C. Chuen-Yen, Foundations of Aerodynamics: bases of aerodynamic design, 5th ed. New York: John Wiley & Sons, Inc., 1998.

I. Hanif, R. Jurnal, and E. Khusus, “Pengaruh Sudut Tekuk (CANT) Winglet Menggunakan Airfoil NACA 2215 Pada Aerodinamika Sayap Pesawat,” Rotor J. Ilm. Tek. Mesin, vol. Edisi Khus, no. 3, pp. 41–45, 2017, [Online]. Available: https://doi.org/10.19184/rotor.v0i0.7702

Herman Sasongko and Yudiansyah Harahap, “Analisa Karakteristik Distribusi Tekanan dan Kecepatan Pada Bodi Aerodinamika Airfoil Dengan Metoda Panel Dalam Fenomena ,” J. Tek. Mesin, vol. 5, no. 1, pp. 22–35, 2003, [Online]. Available: http://puslit2.petra.ac.id/ejournal/index.php/mes/article/view/15968

P. B. Janurianto, U. Budiarto, and E. S. Hadi, “Analisa Efektifitas Wind Turbine Sumbu Vertikal dengan Variasi Jumlah dan Ketebalan Sudu Airfoil NACA sebagai Sumber Energi Listrik Tambahan pada Fisheries Inspection Vessel 594 GT Menggunakan Metode CFD,” J. Tek. Perkapalan, vol. 4, no. 4, pp. 738–747, 2016.

T. Cebeci, “Essential ingredients of a method for low Reynolds-number airfoils,” AIAA J., vol. 27, no. 12, pp. 1680–1688, 1989, doi: 10.2514/3.10321.

F. Guerrero, V. Martinez, O. Garcia, A. Sanchez, and E. S. Espinoza, “Aerodynamic Analysis and Performance of a Mini Airplane UAV,” in IEEE, Denver: International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 1112–1117.

D. A. M. Bugallo, C. I. R. Jaimes, A. M. S. Castrillon, and S.-A. S. Castrillon, “DESIGN AND AERODYNAMIC ANALYSIS OF AN UNMANNED AERIAL VEHICLE WITH A FIXED-WING,” Palarch’s J. Archaeol. Egypt/Egyptology, vol. 19, no. 2, pp. 615–634, 2022.

J. D. Anderson, Fundamentals of Aerodynamics, Sixth Edition, Sixth. New York: McGraw-Hill Education, 2017.

B. W. McCormick, “Aerodynamics of V/STOL Flight.” p. 328, 1967.

J. Höyland, “Challenges for large wind turbine blades,” Norwegian University of Science and Technology, 2010.

W. Shyy, Y. Lian, J. Tang, and D. Viieru, Aerodynamics of Low Reynolds Number Flyers. Cambridge: Cambridge University Press, 2008.

Downloads

Published

2024-12-15

How to Cite

Dzulfikar, M., Purwanto, H., Abdul Wahid, M., & Rahmatulloh, S. (2024). GAYA ANGKAT DAN GAYA HAMBAT SAYAP PUNA MODEL NACA 0015 MENGGUNAKAN SIMULASI ANSYS FLUENT . Jurnal Rekayasa Mesin, 15(3), 1451–1462. https://doi.org/10.21776/jrm.v15i3.1707

Issue

Section

Articles