EFFECT OF ANNEALING ON MICROSTRUCTURE AND HARDNESS OF FeNiCo ALLOYS SYNTHESIZED BY MECHANICAL ALLOYING
DOI:
https://doi.org/10.21776/jrm.v15i1.1690Keywords:
FeNiCo Alloys, Annealing, Mechanical Alloying, Milling, Microstructure, HardnessAbstract
Alloys based on Fe-Ni-Co are categorized as special nickel-based superalloys with braod application as magnetic sensors in electric motors, recording devices as well as for vehicle engine parts. The purpose of this study was to determine the physical and mechanical properties of Fe-Ni-Co materials synthesized by mechanical alloying method, then subjected to annealing temperature variation i.e 800oC, 900oC, and 1000oC for 1 hour. Test methods carried out by XRD-spectra to identify the phase, SEM and EDS mapping to determine the microstructure and composition together with micro hardness test to represent the mechanical properties of this FeNiCo alloys. The results of the XRD test showed that Co atoms and some Fe dissolved into the Ni crystal lattice tended to form a solid solution of g-Ni(Fe,Co). Microstructural observations at 900 OC after milling for 16 hours showed a fine and homogeneous grain structure. The highest hardness value was 421.5 kg/mm2 at 16 hours milling. The Fe-Ni-Co alloy exhibited a homogeneous microstructural distribution with a fine grain structure and high densification.
References
E. Jartych, “On the magnetic properties of mechanosynthesized CoFeNi ternary alloys,” J. Magn. Magn. Mater., vol. 323, no. 2, pp. 209–216, 2011, doi: 10.1016/j.jmmm.2010.09.002.
T. Miyazaki, T. Oomori, F. Sato, and S. Ishio, “Zero magnetostriction composition in Fe-Ni-Co ternary alloy system,” J. Magn. Magn. Mater., vol. 129, no. 2–3, pp. 2–3, 1994, doi: 10.1016/0304-8853(94)90102-3.
S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng. A, vol. 534, pp. 83–89, 2012, doi: 10.1016/j.msea.2011.11.044.
M. Alloy, “Effect of Aging Treatment on Microstructure and Properties of the Fe 55 (CoCrNi) 10 (MoV) 5 C 5 Medium-Entropy Alloy,” vol. 55, 2020.
S. Sinyova, L. Dreval, R. Starykh, and O. Novoghilova, “Study of the Phase Equilibria of the Co-Fe-Ni Ternary System in the High-Temperature Range,” J. Phase Equilibria Diffus., vol. 40, no. 4, pp. 583–587, 2019, doi: 10.1007/s11669-019-00747-7.
C. Wang et al., “Phase equilibria in the Ni-V-Ta ternary system,” Metals (Basel)., vol. 8, no. 10, 2018, doi: 10.3390/met8100774.
S. W. Hwang, J. H. Ji, E. G. Lee, and K. T. Park, “Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight,” Mater. Sci. Eng. A, vol. 528, no. 15, pp. 5196–5203, 2011, doi: 10.1016/j.msea.2011.03.045.
I. S. Kalashnikov, O. Acselrad, T. Kalichak, M. S. Khadyyev, and L. C. Pereira, “Behavior of Fe-Mn-Al-C steels during cyclic tests,” J. Mater. Eng. Perform., vol. 9, no. 3, pp. 334–337, 2000, doi: 10.1361/105994900770346015.
R. Rana, “Special issue on ‘Medium manganese steels,’” Mater. Sci. Technol. (United Kingdom), vol. 35, no. 17, pp. 2039–2044, 2019, doi: 10.1080/02670836.2019.1673971.
S. Chen, R. Rana, A. Haldar, and R. K. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol. 89, pp. 345–391, 2017, doi: 10.1016/j.pmatsci.2017.05.002.
S. Omole, A. Lunt, S. Kirk, and A. Shokrani, “Advanced Processing and Machining of Tungsten and Its Alloys,” J. Manuf. Mater. Process., vol. 6, no. 1, p. 15, 2022, doi: 10.3390/jmmp6010015.
Z. Rao et al., “Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design,” Intermetallics, vol. 111, no. May, 2019, doi: 10.1016/j.intermet.2019.106520.
P. V. Satyanarayana, B. Blessto, R. Sokkalingam, C. Rambabu, and K. Sivaprasad, “Effect of Fe Addition to Binder Phase on Mechanical Properties of Tungsten Heavy Alloy,” Trans. Indian Inst. Met., vol. 73, no. 4, pp. 863–871, 2020, doi: 10.1007/s12666-019-01833-7.
Y. Wu, B. Ji, and W. Wang, “Reducing the internal stress of fe-ni magnetic film using the electrochemical method,” Processes, vol. 9, no. 11, 2021, doi: 10.3390/pr9111883.
F. He et al., “Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system,” Scr. Mater., vol. 131, no. June 2018, pp. 42–46, 2017, doi: 10.1016/j.scriptamat.2016.12.033.
Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater., vol. 10, no. 6, pp. 534–538, 2008, doi: 10.1002/adem.200700240.
C. C. Fu, L. J. Chang, Y. C. Huang, P. W. Wong, and J. S. C. Jang, “Microstructure and mechanical properties of solid-phase sintered heavy tungsten alloy,” Adv. Mater. Res., vol. 15–17, pp. 575–580, 2007, doi: 10.4028/www.scientific.net/amr.15-17.575.
A. Patra, S. K. Karak, and S. Pal, “Effects of Mechanical Alloying on Solid Solubility,” Adv. Eng. Forum, vol. 15, pp. 17–24, 2016, doi: 10.4028/www.scientific.net/aef.15.17.
N. K. Prasad and V. Kumar, “Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying,” J. Mater. Sci. Mater. Electron., vol. 26, no. 12, pp. 10109–10118, 2015, doi: 10.1007/s10854-015-3695-7.
C.-L. Chen and Sutrisna, “The effect of mo and dispersoids on microstructure, sintering behavior, and mechanical properties of W-Mo-Ni-Fe-Co heavy tungsten alloys,” Metals (Basel)., vol. 9, no. 2, pp. 1–11, 2019, doi: 10.3390/met9020111.
Y. Guo et al., “Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys,” J. Alloys Compd., vol. 820, no. xxxx, p. 153104, 2020, doi: 10.1016/j.jallcom.2019.153104.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sutrisna Sutrisna, Didit Setyo Pamuji, Angger Bagus Prasetiyo, Ismail Zulpria Ababil, Ihwanul Aziz
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.