• Ekha Panji Syuryana Institut Teknologi Bandung
  • Asep Indra Komara Politeknik Manufaktur Bandung
  • Bambang Widyanto Universitas Jenderal Achmad Yani
  • Sutarno Sutarno Universitas Jenderal Achmad Yani
  • Manty Aldilani Ikaningsih Universitas Jenderal Achmad Yani
  • Dicko Adrian Aditya Universitas Jenderal Achmad Yani
  • Riskamti Riskamti Universitas Jenderal Achmad Yani
  • Moch Salman Fadillah Suardana Universitas Jenderal Achmad Yani
  • Cagiva Abdul Malik Universitas Jenderal Achmad Yani



Tribo-Corrosion, 316LX, Additive Manufacture, 3D Printing, Surface Acid


Tribocorrosion is a type of material degradation caused by simultaneous wear and corrosion of metal surfaces caused by laminar or turbulent flow. Additive manufacturing technology plays an important role in its application to precision components and complex assemblies. This study developed a 316LX material with Fe, Ni, Cr, and other powder alloys that was processed into an ultra-protective wire as a 3D printing filler. This simulation of tribocorrosion conditions was performed on a triboester machine. This simulation is expected to provide important insights and understanding into the behavior and properties of the 316LX 3D printing material, especially when exposed to abrasion and corrosion conditions in a sulfuric acid solution environment. Corrosion Rate Testing of 316LX Material Additives Using Potentiodynamic Methods in a Modified Rotating 5% Sulfuric Acid Fluid. In addition to corrosion rate, the Vickers hardness, metallography, and shrinkage of the 316LX green part material were also tested at 1000oC after sintering.


Popoola. A., OE. O., OO. Ige. Corrosion Resistance Through the Application of Anti-Corrosion Coating. INTECH. Chapter 12, pp. 243-261, 2014.

Ian. G., David. R., Brent. S. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Additive Manufacturing Technologies Handbook, 2nd Ed, Springer Newyork Heidelberg Dordrecht London, Chapter 1, pp. 1-19, 2015.

A. F. Sheikh., Ankush. R., Mir. I. U., Armin. R. Tribo-corrosion behavior of composites and coating: An overview of influencing factors, evaluation methods and inhibitors. Jurnal Tribologi, v. 35, pp. 92-116. 2022.

T. Prabhu. Modern Rapid 3D printer- A Design Review, IAEME Publication. International Journal of Mechanical Engineering and Technology, v. 7, n. 3, pp. 29-37, 2016.

Wang, Z.; Yan, Y.; Qiao, L. Tribocorrosion Behavior of Nanocrystalline Metals: A Review. Mater. Trans., v. 56, pp 1759–1763, 2015.

R. S. Jorge. Investigation of The Corrosion and Tribocorrosion Behavior of Metallic Bio Materials. Doctoral Thesis: Lulea University of Technology, Chapter 1, pp. 3-14, 2015.

A. Ramya., Sai. I. V. 3D Printing Technologies In Various Applications. International Journal of Mechanical Engineering and Technology (IJMET), v. 7, n. 3, pp.396-409, 2016.

Y. Sun., P. A. Dearnley. Tribocorrosion Behavior of Duplex S/Cr (N) and S/Cr

(C) Coatings on CoCrMo Alloy in 0.89% NaCl Solution. J Bio Tribo Corros, v. 1, pp. 1-13, 2015.

S. Mischler., Landolt. D. Tribocorrosion of Passive Metals and Coating. Journal Tribocorrosion : American Journal of Analytic Chemistry. Woodhead Publishing : Lausanne, v. 11, n. 10, 2011.

Y. Fanglong., Xin. Z., Songlin. N., Hui. J., Zhen. H. Tribocorrosion Behavior of Several Corrosion- resistant Alloys Sliding Against CF-PEEK : Application for Hydraulic Valve in Seawater. Int. J. Electrochem. Sci., v. 14, pp. 4643-4658, 2019.

V. A. Barao., C. Sukotjo., M. T. Mathew. Fundamentals of Linking Tribology and Corrosion (Tribocorrosion) for Medical Application. Bio-tribocorrosion, Chapter 19, pp. 637-655, 2013.

Margono. S., Fajar. M. I., Januar. P. U. Analisa Perbedaan Laju Korosi Hasil Pengujian Weight Loss dan Polarisasi Pada Pipa dengan Pengujian Korosi Standar ASTM G59 dan ASTM G31. Jurnal Tera, v. 2, n. 1, 2022.

Muhaemin. A. F., Iwan. N. G. Tensile Test Analysis and Micro-structure Observation of Shielded Metal Arc Welding S45C Steel Against Current Variations. TRAKSI: Majalah Ilmiah Teknik Mesin, v. 22, n. 2, pp. 65-78, 2022.

Lucas, B. N. Liquid Penetrant Testing (3rd ed.). ASNT: This handbook covers various non-destructive testing methods, including a section on microhardness testing, Nondestructive Testing Handbook: v. 2, 2013.

G. Haijun., C. Crater., A. Ordonez., Craig. W., Madison. W., C. Ginn. Material Properties and Shrinkage of 3D Printing Parts using Ultrafuse Stainless Steel 316LX Filament. MATEC Web of Conferences: ICMMM 2018, v. 249, 2018.




How to Cite

Syuryana, E. P., Komara, A. I., Widyanto, B., Sutarno, S., Ikaningsih, M. A., Aditya, D. A., Riskamti, R., Suardana, M. S. F., & Malik, C. A. (2023). TRIBO-CORROSION INVESTIGATION ON MATERIAL 316LX MANUFACTURING RESULT OF 3D PRINTING MATERIAL ADDITIVES IN 5% H2SO4 SOLUTION. Jurnal Rekayasa Mesin, 14(3), 1041–1053.