KUAT BENDING, FRAKTOGRAFI, DAN STRUKTUR MIKRO HASIL 3D PRINTING BERBAHAN PLA (POLYLACTIC ACID) - TITANIUM

Authors

  • Mahros Darsin Department of Mechanical EngineeringUniversity of Jember
  • Firman Ema Ismono Universitas Jember
  • Mochamad Asrofi Universitas Jember
  • Yuni Hermawan Universitas Jember
  • Intan Hardiatama Universitas Jember

DOI:

https://doi.org/10.21776/jrm.v15i3.1631

Keywords:

3D Printing, PLA-Titanium Filament, Bending Test

Abstract

Manufacturing technology has experienced significant progress with various innovations, including 3D printing. In this study, an innovation was made using a filament made of PLA 60% and titanium 40%. Bending tests are carried out to determine the combination of 3D printing parameters that can produce the most optimal bending strength. This study uses the Taguchi method orthogonal matrix L4(23). The data is processed using Analysis of Variance (ANOVA). The parameters that produce optimal bending strength values are a nozzle temperature of 230 ⁰C, a print speed of 20 mm/s, and a layer height of 0.3 mm, with the highest bending strength value of 7.13 MPa and the lowest of 2.16 MPa. The factors that contributed significantly to the bending strength results were nozzle temperature of 52.84 %, print speed of 15.91 %, and layer height of 1.80 %.

Author Biographies

Mahros Darsin, Department of Mechanical EngineeringUniversity of Jember

Associate Professor in Mechnical Engineering, Universitas Jember

Firman Ema Ismono, Universitas Jember

Alumni PS S1 Teknik Mesin, Universitas Jember

Mochamad Asrofi, Universitas Jember

Dosen Jurusan Teknik Mesin, Universitas Jember

Yuni Hermawan , Universitas Jember

Dosen Jurusan Teknik Mesin, Universitas Jember

Intan Hardiatama , Universitas Jember

Dosen Jurusan Teknik Mesin, Universitas Jember

References

Saputra, O. (2019). Pengoperasian mesin cetak 3D printing. Edisi pertama. Surakarta: Wade group.

Kesavarma, S., Lee, E. H., Samykano, M., Kadirgama, K., Rahman, M. M., & Sofiah, A. G. N. (2020). Flextural properties of 3D printed Copper-Filler Polylactic Acid (Cu-PLA). IOP Conference Series: Materials Science and Engineering, 788(1).

Ali, F. B., Awale, R. J., Fakhruldin, H., & Anuar, H. (2016). Peningkatan fleksibiliti poli(laktik asid) menggunakan minyak kelapa sawit terepoksi untuk aplikasi pembungkus mesra alam. Malaysian Journal of Analytical Sciences, 20(5), 1153–1158.

Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco, E. A. (2015). Biomaterial properties of titanium in dentistry. Journal of Oral Biosciences, 57(4), 192–199.

Rodriguez, J. A., Jerez-Mesa, R., Llumà, J., Traver-Ramos, O., Gomez-Gras, G., & Roa Rovira, J. J. (2019). Mechanical Properties of 3D-Printing Polylactic Acid Parts subjected to Bending Stress and Fatigue Testing. Materials, 12(23), 3859.

Darsin, M., Amir, R. L., Sutjahjono, H., Ramadhan, M. E., & Hermawan, Y. (2022). The Effect of Nozzle Temperature , Layer Height , and Infill Pattern on Dimensional Accuracy and Flexural Strength of 3D Printed Cu-PLA Filaments. Advanced Engineering Science. 1437–1449.

Darsin, M., Sabariman, W. A., Trifiananto, M., & Fachri, B. A. (2023). Flexural properties of metal 3D printing products using PLA-stainless steel filament. AIP Conference Proceedings, 2482.

Soejanto, I. (2009). Desain eksperimen dengan metode Taguchi. Edisi pertama. Yogyakarta: Graha Ilmu

Amin, A. (2016). Pengelasan GMAW Metode Temper Bead Welding Pada Baja Karbon Sedang. Jurnal Teknik Mesin UNISKA 02(01).

Raheem, Z. (2020). Designation : D 7264 / D 7264M -07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials 1 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials 1. March, 1–11.

Seprianto, D., Wilza R., & Iskandar (2017). Optimasi Parameter Pada Proses Pembuatan Objek 3D Printing Dengan Teknologi FDM Terhadap Akurasi Geometri. Seminar Nasional Teknik Industri Universitas Gadjah Mada, TP-88.

Butt, J., Bhaskar, R., & Mohaghegh, V. (2022). Non-Destructive and Destructive Testing to Analyse the Effects of Processing Parameters on the Tensile and Flexural Properties of FFF-Printed Graphene-Enhanced PLA. Journal of Composites Science, 6(5).

Nugroho, A., Ardiansyah, R., Rusita, L., & Larasati, I. L. (2018). Effect of layer thickness on flexural properties of PLA (PolyLactid Acid) by 3D printing. Journal of Physics: Conference Series, 1130(1).

Gapsari, F., & Setyarini, P. H. (2010). Pengaruh Fraksi Volume Terhadap Kekuatan Tarik Dan Lentur Komposit Resin Berpenguat Serbuk Kayu. Jurnal Rekayasa Mesin, 1(2), 59–64.

Tanikella, N. G., Wittbrodt, B., & Pearce, J. M. (2017). Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Additive Manufacturing, 15, 40–47.

Samani, M. K., Ding, X. Z., Khosravian, N., Amin-Ahmadi, B., Yi, Y., Chen, G., Neyts, E. C., Bogaerts, A., & Tay, B. K. (2015). Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc. Thin Solid Films, 578(2015), 133–138.

Xu, S., Tahon, J. F., De-Waele, I., Stoclet, G., & Gaucher, V. (2020). Brittle-to-ductile ransition of pla induced by macromolecular orientation. Express Polymer Letters, 14(11), 1034–1047.

Chen, C., Chueh, J., Tseng, H., Huang, H., & Lee, S. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24, 1167–1173.

Cai, X., Ding, S., Li, Z., Zhan, X., Wen, K., Xu L, Zhang, Y., Peng, Y., & Shen T. (2021). Simultaneous sintering of low-melting-point Mg with high-melting-point Ti via a novel one-step high-pressure solid-phase sintering strategy. Journal of Alloy and Compund, 858.

Downloads

Published

2024-12-15

How to Cite

Darsin, M., Ismono, F. E., Asrofi, M., Hermawan , Y., & Hardiatama , I. (2024). KUAT BENDING, FRAKTOGRAFI, DAN STRUKTUR MIKRO HASIL 3D PRINTING BERBAHAN PLA (POLYLACTIC ACID) - TITANIUM. Jurnal Rekayasa Mesin, 15(3), 1375–1385. https://doi.org/10.21776/jrm.v15i3.1631

Issue

Section

Articles