EFFECT OF COMPRESSOR INLET TEMPERATURE ON THERMAL EFFICIENCY ROLLS ROYCE RB211 GAS GENERATOR IN COMBINED CYCLE POWER PLANT

Authors

  • Nanang Yulistio Politeknik Negeri Batam
  • Muhammad Prihadi Eko Wahyudi Politeknik Negeri Batam
  • Qoriatul Fitriyah Politeknik Negeri Batam

DOI:

https://doi.org/10.21776/jrm.v15i1.1505

Keywords:

Combined Cycle Power Plant, Gas Generator, Thermal Efficiency, Regression Analysis

Abstract

The combined cycle power plant must operate 24 hours without stopping so that in operation at any time an increase in the temperature of the gas generator RB211 can occur. The RB211 gas generator works well when the ambient temperature is low. The X combine cycle power plant uses a chiller to lower the inlet air temperature so that the air entering the compressor will be lower. The purpose of this study was to analyze and conclude the effect of the compressor inlet temperature on the thermal efficiency of the Rolls Royce RB211 gas generator in the combined cycle power plant. Data was collected by requesting historical data on September 5-11, 2022 in the central control room. The method used in this study is simple linear regression analysis because it only involves two variables. The independent variable is the inlet temperature of the compressor and the dependent variable is the thermal efficiency of the gas generator. It is known that the highest efficiency is at a temperature of 292,94 kelvin with a thermal efficiency value of 36,87% while the lowest efficiency is at a temperature of 301,89 kelvin with a thermal efficiency value of 35,61%. The regression analysis equation is Ŷ = 0,60665231-0,00082223X so the hypothesis results obtained through the significant F test with F table is that there is a significant effect between the compressor inlet temperature on the thermal efficiency of the gas generator.

References

J. L. Yusuf, T. K. Wijaya, and R. Nandika, “Analisa Performa Daya Dan Karakteristik Operasi Generator Turbin Uap Sst 400 Type Ams 1250 Alb 4 L Bs Di Pltgu Tg.Uncang ( Pt.Pln Batam ),” Sigma Tek., vol. 4, no. 1, pp. 91–100, 2021, doi: 10.33373/sigmateknika.v4i1.3150.

R. Sari, W. Anurogo, and M. Z. Lubis, “Pemetaan sebaran suhu penggunaan lahan menggunakan citra landsat 8 di Pulau Batam,” J. Integr., vol. 10, no. 1, pp. 32–39, 2018, [Online]. Available: www.earthexplorer.usgs.gov.

P. Firmansyah, P. M. Adhi, and C. S. Abadi, “Simulasi Parametrik Pengaruh Temperatur Lingkungan pada Pembangkit Listrik Tenaga Gas,” J. Mek. Terap., vol. 2, no. 2, pp. 74–81, 2021, doi: 10.32722/jmt.v2i2.4422.

A. Syahidin, S. Setiawidayat, and S. Ali Putra, “Analisis Efisiensi Thermal Untuk Menentukan Beban Optimal Pada Pembangkit Listrik Tenaga Gas Menggunakan Metode Siklus Brayton,” JASEE J. Appl. Sci. Electr. Eng., vol. 1, no. 02, pp. 1–15, 2021, doi: 10.31328/jasee.v1i02.24.

F. Qoriatul and M. P. E. Wahyudi, Teknologi Pembangkit I. Bandung: Media Sains Indonesia, 2021.

A. A. Huda, “Pengaruh Lip Thickness Concentric Jet Flow,” J. Rekayasa Mesin, vol. 10, no. 2, pp. 53–64, 2019.

R. Royce, “RB211-24G-T Gas Generator Operation, Maintenance and Parts Manual,” in Ref 102999, no. 001, 2004, pp. 1–8.

S. M. I Gusti Ketut Sukadana, Teori Turbin Gas dan Jet Propulsi. Denpasar: Teknik Mesin Universitas Udayana, 2015.

R. J. Al-ihsany, B. Sukoco, and A. A. Nugroho, “Analisa efisiensi turbin generator pada STG PLTGU Blok 1 di PT . Indonesia Power UP Semarang,” in Prosiding KONFERENSI ILMIAH MAHASISWA UNISSULA (KIMU) 4, 2020, vol. 4, no. 1, pp. 329–336. [Online]. Available: http://jurnal.unissula.ac.id/index.php/kimueng/article/view/13712

H. Dwipayana and M. A. A. Baraf, “Analisis Perbandingan Performansi Pembangkit Listrik Tenaga Gas TM 2500 Jakabaring Unit 2 dan Unit 3 Pada Waktu Beban Puncak,” Tek. J. Ilm., vol. 6, no. 2, pp. 217–232, 2020.

A. K. Putra and H. Pariaman, “Analisis Energi dan Eksergi Pembangkit Listrik Tenaga Gas-Uap Blok 1 Unit Pembangkitan Gresik,” J. Power Plant, vol. 8, no. 1, pp. 30–38, 2020, [Online]. Available: https://media.neliti.com/media/publications/523911-none-0645190e.pdf

A. Naufal, Belyamin, and Jusafwar, “Analisis Termodinamika Performa Turbin Gas Sebelum Dan Sesudah Major Inspection Overhaul Di Pltgu Unit Gt 1.2 Omu Ip Cilegon,” in Seminar Nasional Sains dan Teknologi Terapan IX 2021, 2021, pp. 376–384.

S. Putri Atika Fitri Rahma Sari and M. Husni Syahbani, “Analisis Pengaruh Temperatur Keluar Turbin Terhadap Efisiensi Gas Turbin Generator Di PLTGU Unit II Sektor Keramasan (Analysis of the Effect of Turbine Exit Temperature on Gas Turbine Generator Efficiency at PLTGU Unit II in the Shampooing Sector),” J. Infolek UTP, vol. 01, no. 01, pp. 8–12, 2022.

M. E. Simanjuntak, “Pengaruh Excess Air Terhadap Kinerja PLTU Berkapasitas 12,5 MW Dengan Beban Bervariasi: Sebuah Simulasi Termodinamika Menggunakan Software CycleTempo Versi 5.0,” J. Rekayasa Mesin, vol. 10, no. 3, pp. 287–298, 2020.

Nuryadi, T. D. Astuti, E. S. Utami, and M. Budiantara, Buku Ajar Dasar-dasar Statistik Penelitian. Yogyakarta: Sibuku Media, 2017.

S. Hani, P. E. Pambudi, and M. Suyanto, “Metode Pendekatan Analisis Regresi Untuk Efisiensi Energi Pembangkit Listrik Tenaga Gas (Pltg),” in Prosiding SNAST, 2021, pp. 26–34. [Online]. Available: https://ejournal.akprind.ac.id/index.php/snast/article/view/3352

S. Wahyuning, Dasar-Dasar Dasar Statistik. Semarang: Yayasan Prima Agus Teknik, 2021.

Bustami, D. Abdullah, and Fadlisayah, Statistika Terapannya pada Bidang Informatika. Yogyakarta: Graha Ilmu, 2014. [Online]. Available: https://repository.unimal.ac.id/2485/

R. Royce, “RB211 Exhaust Mass Flow ISO Condition,” in Fact Sheet, 2001.

Downloads

Published

2024-05-15

Issue

Section

Articles