• Slamet Prasetyo Utomo Universitas Brawijaya
  • Djarot B. Darmadi Universitas Brawijaya
  • Teguh Dwi Widodo Universitas Brawijaya



Boiler, Thermal Spray, Metal Alloy, High Temperature Erosion


The purpose of this study was to determine the high temperature erosion rate of the NiCr coating on ASME SA 210 C steel using the combustion oxy fuel thermal spray method. In Circulating Fluidized Bed (CFB) boiler, there is circulation of fly ash, silica sand and air in a high temperature environment which causes erosion. High temperature erosion can be minimized by using Ni-Cr alloy coating sing the combustion oxy fuel thermal spray method. NiCr alloy is proved a able to provider a metal alloy layer composition that can withstand temperatures of 600°C with a fly ash impact speed of 200m/s. The metal alloy compositions that have been studied are NiCr, NiCrCo, NiCrWc, NiCrWcCo, and NiCrCoMo. The results of this study indicates that metal alloys are generally atteche to the substrate and withstand at a high temperatures (600°C). The highest hardness provide by NiCrWcCo alloy which is 177.46 HV. The lowest hardness is found in the composition of the NiCrCo alloy (161.71 HV). The lowest high temperature erosion rate was found in the NiCrWcCo alloy, which was -0.00481 gram/minute. This low erosion rate because the NiCrWcCo alloy produces a good weeting effect for metal alloys and has a high hardness value.

Author Biographies

Slamet Prasetyo Utomo, Universitas Brawijaya

Slamet Prasetyo Utomo lahir di Kota Ngawi tanggal 4 September 1990. Jenjang pendidikan yang di tempuh SD, SMP, SMA, S1 Pendidikan Teknik Mesin Universitas Negeri Malang, dan masih studi lanjut di Departemen Teknik Universitas Brawijaya. Pengalaman bekerja sebagai Laporan di Politeknik Kota Malang jurusan Teknik Mekatronika.

Djarot B. Darmadi, Universitas Brawijaya

Dosen Departemen Teknik Mesin, Universitas Brawijaya

Teguh Dwi Widodo, Universitas Brawijaya

Dosen Departemen Teknik Mesin, Universitas Brawijaya


Agarwal, S., & Suhane, A. (2017). “Study of Boiler Maintenance for Enhanced Reliability of System A Review”. Materials Today: Proceedings, 1542–1549.

Saarivirta, E. H., Kalidakis, S., Stott, F., Perez, F., & Lepistö, T. (2009). “High-temperature erosion–oxidation of uncoated and FB-CVD aluminized and aluminized–siliconized 9Cr–1Mo steel under fluidized-bed conditions”. Wear 267, 2223–2234. https://doi:10.1016/J.wear.2009.08.039.

Leckner, B. (2016). “Fluidized Bed Combustion”. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. doi:10.1016/b978-0-12-409547-2.12183-3.

Vigraman, T., Venkatesh, R., & Pradeep, N. (2020). “Characterisation of SA210 Grade A1 virgin and failed boiler steel tube materials”. Materials Today: Proceedings., https://doi:10.1016/j.matpr.2020.06.554.

Glushkov, M. A. (2021). “An experimental investigation into the fuel oil-free start-up of a coal-fired boiler by the main solid fossil fuel with additives of brown coal, biomass and charcoal for ignition enhancement”. Fuel Processing Technology, 233. https://doi:10.1016/j.fuproc.2021.106986.

Swain, B. K., Bhuyan, S., Behera, R., & Mohapatra, S. S. (2020). “Wear: A Serious Problem in Industry”. Tribology (pp. 1-20). Intech. https://doi: 10.5772/intechopen.94211.

Shimizua, K., Purbaa, R. H., Kusumotoa, K., Yaerb, X., Ito, J., Kasugad, H., & Gaqi, Y. (2019). “Microstructural evaluation and high-temperature erosion characteristics of high chromium cast irons”. Wear 426–427, 420–427. https://doi:10.1016/j.wear.2019.01.043.

Roy, M. (2008). “Tribological degradation at elevated temperature”. Developments in High Temperature Corrosion and Protection of Materials, 117-163. https://doi:10.1016/j.triboint.2010.01.003.

Kumar, S., Handa, A., Chawla, V., Grover, N. K., & Kumar, R. (2021). “Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance : a review”. Surface Engineering, 833–860.

Lukito, N. A., Hidayat, M. I., & Haniffudin, N. (2016). “Analisa Kegagalan Pipa Desuperheater Spray pada embangkit Listrik Tenaga Uap Unit 4 PT”. PJB UP. Gresik. Jurnal Teknik ITS Vol. 5, 2337-3539. https://doi:10.12962/j23373539.v5i2.18236.

Matthews, S., James, B., & Hyland, M. (2013). “High temperature erosion–oxidation of Cr3C2–NiCr thermal spray coatings under simulated turbine conditions”. Corrosion Science 70, 203–211. https://doi: 10.1016/j.corsci.2013.01.030.

Sidhu, H. S., Sidhu, B. S., & Prakash, S. (2007). “Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings”. Surface and Coatings Technology, 202(2), 232–238. https://doi:10.1016/j.surfcoat.2007.05.035.

Bala, N., Singh, H., Karthikeyan, J., & Prakash, S. (2013). “Cold spray coating process for corrosion protection: a review”. Surface Engineering, 30(6), 414–421.

Gurrappa, I. (2000). “Hot corrosion of protective coatings”. Mater Manuf Processes, 761–773.

Mehta, J., Mittal, V. K., & Gupta, P. (2017). “Role of Thermal Spray Coatings on Wear, Erosion and Corrosion Behavior: A Review”. Journal of Applied Science and Engineering, 445452. https://doi:10.6180/jase.2017.20.4.05.

Sidhu, T., Prakash, S., & Agrawal, R. (2006). “Hot corrosion performance of a NiCr coated Ni-based alloy”. Scripta Materialia, 55, 179–182. https://10.1016/j.scriptamat.2006.03.054.

Sidhu, T., Prakash, S., & Agrawal, R. (2006). “Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment”. J Thermal Spray Technology, 387–399. https://0.1361/ 105996306X124392.

Hooda, P. S. (2010). “Chromium, Nickel and Cobalt”. In Y. Ma, Trace Elements in Soils (pp. 461-479). London: Wiley-Blackwell.

Walsh, P. N., & J. M. Quets, R. C. (1995). “Coatings for the Protection of Turbine Blades From Erosion”. Praxair Surface Technologies,, 152-155.

Graça, S., Hadad, M., & Hoffmann, P. (2012). “Challenges in the quantification of high temperature erosive wear”. Materials Science and Technology, 28(5), 532–535.

Tabakoff, W., & Shanov, V. (1995). “Erosion rate testing at high temperature for turbomachinery use”. Surface and Coatings Technology, 76–77, 75–80.

Reed, R. C. (2006). The Superalloys as High-Temperature Materials. The Superalloys (pp. 1–390).

SA210, A. (2002). Standard Specification for Seamless Medium-Carbon Steel Boiler and Superheater Tubes. United States: ASTM International.

Calvarin-Amiri, G., Gourgues, A. F., Huntz, A. M., & Molins, R. (2001). “Effect of environment on the mechanical behavior of Ni-20Cr thin strip”. Materials Science and Engineering A, 298(1–2), 200–208. S0921-5093(00)01319-8.

Hug, E., Lelièvre, M., Folton, C., Ribet, A., Martinez-Celis, M., & Keller, C. (2022). “Additive manufacturing of a Ni-20 wt%Cr binary alloy by laser powder bed fusion: Impact of the microstructure on the mechanical properties”. Materials Science and Engineering A, 834. j.msea.2022.142625

Krejčí, J., & Karmazin, L. (1994). “Phase transformations and recrystallization in Ni-33at.%Cr alloy”. Materials Science and Engineering: A, 188(1-2), 185–191. doi:10.1016/0921-5093(94)90371-9.

Ul-Hamid, A. (2003). “Diverse scaling behavior of the Ni-20Cr alloy”. Materials Chemistry and Physics, 80(1), 135–142.

Hayes, R. W., Azzarto, F., Klopfer, E. A., & Crimp, M. A. (2017). ‘Characterization of creep deformation of Ni-Cr solid solution alloy Nimonic 75”. Materials Science and Engineering A, 690, 453–462. j.msea.2017.02.097.

E11-16, A. (2016). Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. United States: ASTM International.

E3-11, A. (2011). Standard Guide for Preparation of Metallographic Specimens. United States: ASTM International.

G211-14, A. (2014). Standard Test Method for Conducting Elevated Temperature Erosion Tests by Solid Particle Impingement Using Gas Jets. United States: ASTM International.

G76-18, A. (2018). Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets. United States: ASTM International.

E384-05A, A. (2005). Standard Test Method for Microindentation Hardness of Materials. United States: ASTM International.

ASTM-E1920-03.(2021). Metallographic Preparation of Thermal Sprayed Coatings, United State : ASTM International.

Suherman, S., Kuncoro, H. D., Abdullah, I., & Mizhar, S. (2020). “Analisa Hasil Pengelasan Baja SA333 Grade 6 Untuk Aplikasi PLTN”. Jurnal Pengembangan Energi Nuklir, 22(1), 9.

Rasyad, A., & Budiarto, B. (2018). “Analisis Pengaruh Temperatur, Waktu, dan Kuat Arus Proses Elektroplating terhadap Kekuatan Tarik, Kekuatan Tekuk dan Kekerasan pada Baja Karbon Rendah”. Jurnal Rekayasa Mesin, 9(3), 173–182.

Kim, J. H., & Nakamichi, M. (2014). “Effect of grain size on the hardness and reactivity of plasma-sintered beryllium”. Journal of Nuclear Materials, 453(1–3), 22–26.

Bonu, V., & Barshilia, H. C. (2022). “High-Temperature Solid Particle Erosion of Aerospace Components: Its Mitigation Using Advanced Nanostructured Coating Technologies”. Coatings, 12(12).

Pawlowski, L. (2008). “The Science and Engineering of Thermal Spray Coatings: Second Edition”. In The Science and Engineering of Thermal Spray Coatings: Second Edition.

Ashby, M. F. (2011). Material Property Charts. In Materials Selection in Mechanical Design (Fourth Edition). Michael F. Ashby. b978-1-85617-663-7.00004-7

Gu, S., & Kamnis, S. (2009). “Bonding mechanism from the impact of thermally sprayed solid particles.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(11), 2664–2674.

Shewmon, P., & Sundararajan, G. (1983). “Erosion of Metals”. Annual Review of Materials Science, 13(May), 301–318. 13.080183.001505

Samuel J. Rosenberg. (2006). Nickel and Its Alloys. Mechanical Engineers’ Handbook: Materials and Mechanical Design, Third Edition, 1, 256–277.

Sudiro, T., Aryanto, D., Wismogroho, A. S., Hermanto, B., Izzuddin, H., & Pratama, R. (2018). High Temperature Oxidation Behavior of Fe-Cr Steel in Air at 1000-1200 K. 44(1), 23–29.

Korpiola, K. (2004). High temperature oxidation of metal, alloy and cermet powders in hvof spraying process.