• Fitri Wahyuni Universitas Pembanguan Nasional Veteran Jakarta
  • James Julian Universitas Pembangunan Nasional Veteran Jakarta
  • Ferdyanto Ferdyanto Universitas Pembanguan Nasional Veteran Jakarta
  • Ade Fikri Fauzi Universitas Pembanguan Nasional Veteran Jakarta



Cogging Torque, Taguchi Method, Air Gap, PMSM


Permanent Magnet Synchronous Motor (PMSM) applications include electric vehicles, industrial pumps, wind turbines, aerospace technology, and many others. In this study, cogging torque is the central aspect of the discussion, which is the motor model, the thickness of the permanent magnet rotor, and the air gap in the electric motor influence. The Taguchi method uses parameter levels on the motor, which are divided into 16 types of orthogonal arrays, where the process is carried out twice in iterations. The first stage of simulation testing was to produce the primary model where number 4 (A1B4 series) was obtained as the most optimal motor model with a cogging torque of 1.56 Nm and an air gap flux density of 768 mTesla (mili tesla). Then the second test was to modify several parts of the motor with the following 16 orthogonal array types, which produced number 8 (A2B4 series) with a cogging torque of 1.08 Nm and an air gap flux density of 733 mTesla. One of the parameters apart from the cogging torque must be maintained is the air gap flux density. This variable affects the permeability of the motor so that later it will affect the amount of material used and the production costs of electric motors. The final result is a model that produces the lowest cogging torque while maintaining other parameters on the motor.


H. Assistant Professor and H. Kumar Mohajan, “The Second Industrial Revolution has Brought Modern Social and Economic Developments,” J. Soc. Sci. Humanit., vol. 6, no. 1, pp. 1–14, 2020.

A. Loganayaki and R. Bharani Kumar, “Permanent Magnet Synchronous Motor for Electric Vehicle Applications,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, pp. 1064–1069, 2019.

A. Wikarta, M. N. Yuniarto, and I. Sidharta, “Pengujian Keselamatan Thermal pada Battery Pack Sepeda Motor Listrik Berdasarkan Regulasi UN R-136,” J. Rekayasa Mesin, vol. 11, no. 3, pp. 347–356, 2020.

Y. Chen and B. Liu, “Design and analysis of a five-phase fault-tolerant permanent magnet synchronous motor for aerospace starter-generator system,” IEEE Access, vol. 7, pp. 135040–135049, 2019.

Z. X. Jiang, J. H. Park, D. P. Xu, and S. M. Hwang, “A linear haptic motor with cogging force optimization,” Sensors Actuators A Phys., vol. 346, 2022.

Y. Huang, L. Jiang, and H. Lei, “Research on cogging torque of the permanent magnet canned motor in domestic heating system,” Energy Reports, vol. 7, pp. 1379–1389, 2021.

J. Gao, G. Wang, X. Liu, W. Zhang, S. Huang, and H. Li, “Cogging Torque Reduction by Elementary-Cogging-Unit Shift for Permanent Magnet Machines,” IEEE Trans. Magn., vol. 53, no. 11, 2017.

P. Dini and S. Saponara, “Cogging torque reduction in brushless motors by a nonlinear control technique,” Energies, vol. 12, no. 11, 2019.

J. G. Washington, G. J. Atkinson, and N. J. Baker, “Reduction of cogging torque and EMF harmonics in modulated pole machines,” Proc. - 2014 Int. Conf. Electr. Mach. ICEM 2014, pp. 263–269, 2014.

R. Ilka, Y. Alinejad-Beromi, and H. Yaghobi, “Cogging torque reduction of permanent magnet synchronous motor using multi-objective optimization,” Math. Comput. Simul., vol. 153, pp. 83–95, 2018.

D. Wu and Z. Zhu, “Design trade-off between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines,” 2015 IEEE Int. Magn. Conf. INTERMAG 2015, 2015.

A. Cahyadi, “Optimalisasi Desain Motor Brushless DC 1 kW Untuk Mengurangi Torsi Cogging Pada Kendaraan Listrik,” 2018.

T. Srisiriwanna and M. Konghirun, “A study of cogging torque reduction methods in brushless DC motor,” ECTI Trans. Electr. Eng. Electron. Commun., vol. 10, no. 2, pp. 138–144, 2012.

C. Soemphol, A. Nuan-On, and P. Parametpisit, “A prototype of 3D-printed permanent magnet generator for low power applications,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 98–104, 2022.

J. Julian, F. Wahyuni, L. Mula Tua, and N. Toding Bunga, “Analisis Motor Listrik Tipe Synchronous dengan Metode Komputasi,” J. Asiimetrik J. Ilm. Rekayasa Inov., pp. 71–78, 2021.

K. C. Kim, “A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 50, no. 2, pp. 793–796, 2014.

X. Zhu, W. Hua, M. Cheng, and G. Zhang, “An improved configuration for cogging torque reduction in flux-reversal permanent magnet machines,” IEEE CEFC 2016 - 17th Bienn. Conf. Electromagn. F. Comput., 2017.

A. Kumar, R. Gandhi, R. Wilson, and R. Roy, “Analysis of Permanent Magnet BLDC Motor Design with Different Slot Type,” 2020 IEEE Int. Conf. Power Electron. Smart Grid Renew. Energy, PESGRE 2020, 2020.

L. Petkovska, G. Cvetkovski, and P. Lefley, “Analysis of the stator topology impact on cogging torque for surface permanent magnet motor,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 34, no. 2, pp. 456–474, 2015.

C. L. Cham and Z. Bin Samad, “Brushless DC motor electromagnetic torque estimation with single-phase current sensing,” in Journal of Electrical Engineering and Technology, 2014, vol. 9, no. 3, pp. 866–872.

J. X. Shen, S. Cai, J. Yuan, S. Cao, and C. W. Shi, “Cogging torque in SPM machine with segmented stator,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 35, no. 2, pp. 641–654, 2016.

B. L. Chikouche, K. Boughrara, and R. Ibtiouen, “Cogging torque minimization of surface-mounted permanent magnet synchronous machines using hybrid magnet shapes,” Prog. Electromagn. Res. B, vol. 62, no. 1, pp. 49–61, 2015.

T. Liu, S. Huang, J. Gao, and K. Lu, “Cogging torque reduction by slot-opening shift for permanent magnet machines,” IEEE Trans. Magn., vol. 49, no. 7, pp. 4028–4031, 2013.

R. Hiremath, “Finite element study of induced Emf, cogging torque and its reductions in BLDC motor,” 2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017, vol. 2018-Janua, pp. 1665–1668, 2018.

R. Abdollahi, “Induction motor drive based on direct torque controlled used multi-pulse AC-DC rectifier,” Int. J. Appl. Power Eng., vol. 10, no. 2, p. 89, 2021.

N. Kusumaningrum, S. Riyadi, L. H. Pratomo, and F. B. Setyawan, “Optimalisasi Pengereman Regeneratif dengan Perubahan Sudut Eksitasi pada Pulsa Tunggal,” J. Tek. Elektro, vol. 13, no. 1, pp. 1–9, 2021.

A. A. Yousif, A. M. Mohammed, and M. M. E. Ali, “Radial force cancellation of bearingless brushless direct current motor using integrated winding configuration,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 79–88, 2022.

A. Arias, J. Caum, E. Ibarra, and R. Grino, “Reducing the Cogging Torque Effects in Hybrid Stepper Machines by Means of Resonant Controllers,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2603–2612, 2019.

J. J. Zhang, Wenchao, Liwei Shi, Kaiwen Liu, Lintao Li, “Optimization analysis of automotive asymmetric magnetic pole permanent magnet motor by Taguchi method,” Int. J. Rotating Mach. 2021, pp. 1–9, 2021.

M. H. N. Razali, J. M. Lazi, Z. Ibrahim, M. H. N. Talib, and F. A. Patakor, “Sliding mode control with observer for permanent magnet synchronous machine drives,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 89–97, 2022.

G. Ma, X. Qiu, J. Yang, F. Bu, Y. Dou, and W. Cao, “Structural Parameter Optimization to Reduce Cogging Torque of the Consequent Pole In-Wheel Motor,” Proc. - 2018 IEEE 18th Int. Conf. Power Electron. Motion Control. PEMC 2018, pp. 770–775, 2018.