KARAKTERISASI BIODEGRADASI PADA KOMPOSIT POLYMER POLYLACTID ACID (PLA) DENGAN PENAMBAHAN CHITOSAN DAN HYDROXYAPATITE

Authors

  • Dina Novera Serfandi Universitas Brawijaya
  • Putu Hadi Setyarini Universitas Brawijaya
  • Purnami Purnami Universitas Brawijaya
  • Sulistyono Sulistyono Politeknik Negeri Malang

DOI:

https://doi.org/10.21776/jrm.v14i3.1476

Keywords:

Biodegradation, Chitosan, Hydroxyapatite, PLA

Abstract

Polylactid Acid (PLA) is a biodegradable polymer made from natural ingredients so it is safe to use for biomaterials. The purpose of this study was to determine the biodegradation characteristics of the addition of chitosan powder and Hydroxyapatite to PLA. There were 4 variations in this study, namely PLA 100 (pure PLA), PLA-chitosan-Hydroxyapatite 94-3-3 (Composite 1), PLA-chitosan-Hydroxyapatite 94-0-6 (Composite 2), PLA-chitosan-Hydroxyapatite 94-6-0 (Composite 3). Samples were prepared using the extrusion method to form filaments, then the filaments were injected with a temperature of 170-190°C and an injection pressure of 5-6 bar. Characterization was carried out using the Immerse Test, FTIR Test, and SEM-EDS Test. The results of the Immerse Test showed an increase in sample mass of 1.04%, 1.1%, 1.05% and 1.14% respectively. FTIR test results did not show any new functional groups in the composite. The results of the SEM test indicated the presence of Na and Cl deposits on the sample surface as evidenced by the results of the EDS test that all samples contained Na and Cl elements. So that the weight gain occurs because the three materials are not chemically mixed which easily separate and cause cavities, these cavities are filled with HBSS liquid.

References

Hermawan, H., INA-Rxiv, https://osf.io/preprints/inarxiv/v3z5t/. Diakses: July 2022.

Sukaryo, S.G., Purnama, A., Hermawan, H., “Structure and properties of biomaterials”, Biomaterials and Medical Devices, v. 58, pp. 1-22, Feb. 2016.

Farah, S., Anderson, D.G., Langer, R., “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review”, Advanced Drug Delivery Reviews, v. 107, pp. 367-392, Dec. 2016.

Neves, S.C., Teixeira, L.S.M., Moroni, L., Reis, R.L., Blitterswijk, C.A.V., Alves, N.M., Karperien, M., Mano, J.F., “Chitosan/poly(3-caprolactone) blend scaffolds for cartilage repair”, Biomaterials, v. 32, pp. 1068-1079, Oct. 2011.

Jin, R.M., Sultana, N., Baba, S., Hamdan, S., Ismail A.F., “Porous PCL/chitosan and nHa/PCL/chitosan scaffolds for tissue engineering applications: fabrication and evaluation”, Journal of Nanomaterials, v. 2015, pp. 8, May. 2015.

Prever, E.M.B.D., Bistolfi, A., Bracco, P., Costa, L., “UHMWPE for arthoplasty: past or future?”, Journal of Orthopaedics and Traumatology, v. 10, pp. 1-8, Mar. 2009.

Callister, W.D., Rethwisch, D.G., Materials Science and Engineering: An Introduction, 9 ed., New York, Willey, 2014.

Chawla, K.K., Composite Materials: Science and Engineering, 3 ed., Heidelberg, Springer, 2012.

Gapsari, F., Setyarini, P. H., “Pengaruh fraksi volume terhadap kekuatan tarik dan lentur komposit resin berpenguat serbuk kayu”, Jurnal Rekayasa Mesin, v. 1, n. 2, pp. 59-64, May, 2012.

Hollinger, J.O., An Introduction to Biomaterials, 2 ed., Florida, CRC Press, 2006.

Park, J., Lakes, R.S, Biomaterials: An Introduction, 3 ed., Heidelberg, Springer, 2007.

Ranjan, N., Singh, R., Ahuja, IPS., “Material processing of PLA-HAp-CS based thermoplastic composite through fused deposition modeling for biomedical applications”, Biomanufacturing, pp. 123-136, Mar. 2019.

Lei, Y., Rai, B., Ho, K.H., Teoh, S.H., “In vitro degradation of novel bioactive polycaprolactone-20% tricalcium phosphate composite scaffold for bone engineering”, Materials Science and Engineering C, v. 27, n. 2, pp. 293-298, Mar. 2007.

Xiao, X., Liu, R., Huang, X., Ding, X., “Preparation and characterization of hydroxyapatite/polycaprolactone–chitosan composites”, Journal Material Science: Material Med., v. 20, pp. 2375-2383. Dec. 2009.

Saputro, A.N.C., Ovita, A.L., “Sintesis dan karakterisasi bioplastik dari kitosan-pati ganyong (canna edulis)”, Jurnal Kimia dan Pendidikan Kimia, v. 27, n. 1, pp. 13-21, Apr. 2017.

Hayati, K., Setyaningrum, C. C., Fatimah, S., “Pengaruh penambahan kitosan terhadap karakteristik plastik biodegradable dari limbah nata de coco dengan metode inversi fasa”, Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, v. 4, n.1, pp. 9-14, July, 2020.

Prahmila, D.I., “Aplikasi nano kitosan sebagai pengawet alami fillet nila merah (oreochromis sp.) selama penyimpanan suhu chilling”, M. Sc., Departemen Teknologi Hasil Pertanian Institut Pertanian Bogor, Bogor, 2016.

Handayani, L., Saputra, F., Astuti, Y., “Utilization and characterization of oyster shell as chitosan and nanochitosan”, Jurnal Kimia Sains dan Aplikasi, v. 21, n. 4, pp. 224-231, Oct. 2018.

Paternina, J., “Preventive moisture caking, the unwanted aglomeration”, In: Powder and Bulk Engineering Magazine, CSC Publishing, 2014.

Wang, J., Hidayah, Z. N., Razak, S. I. A., Kadir, M. R. A., Nayan, N. H. M., Li, Y., Amin, K. A. M., “Surface entrapment of chitosan on 3D printed polylactic acid scaffold and its biomimetic growth of hydroxyapatite”, Composites Interfaces, v. 26, n.5, pp. 465-478, Aug. 2018.

Hu, G., Guan, K., Lu, L., Zhang, J., Lu, N., Guan, Y., “Engineered functional surfaces by laser microprocessing for biomedical applications”, Engineering, v. 4, n.6, pp. 822-830, Dec. 2018.

Manivasagam, T. G., Srinivasan, S., Krishnan, G., Kooi, B. J., Notten, P. H. L., “Electrochemical deuteration of metastable mgti alloys: an effective way to inhibit phase segregation”, Advanced Energy Materials, v. 4, n.1. Sept. 2013.

Wardiana, I. W. G. S., Setyarini, P. H., Widodo, T. D., “Pengaruh penambahan hidroksiapatit dan kitosan pada pla dan abs terhadap sifat mekanik dari komposit biomaterial”, Rekayasa Mesin, v. 13, n. 3, pp. 837-846, Jul. 2022.

Downloads

Published

2023-12-15

Issue

Section

Articles