KARAKTERISASI PENAMBAHAN KITOSAN DAN HAP PADA PLA TERHADAP SIFAT MEKANIK KOMPOSIT
DOI:
https://doi.org/10.21776/jrm.v15i3.1475Keywords:
Hydroxyapatite, Chitosan, Mechanics, PLAAbstract
PLA (poly lactid acid) is a biodegradable polyester that can be applied to tissue engineering because it is biocompatible and non-toxic. The purpose of this study to determine the mechanical characteristics of mixing PLA, chitosan, and Hydroxyapatite. There were 4 variations in this study, namely PLA 100 (pure PLA), PLA-chitosan-Hydroxyapatite 94-3-3 (Mix 1), PLA-chitosan-Hydroxyapatite 94-0-6 (Mix 2), PLA-chitosan-Hydroxyapatite 94-6-0 (Mix 3). The method of processing specimens is carried out by mixing the material using an extrusion machine to form filaments, then the filaments are cut to a size of 3-5 mm for injection processing with a process temperature of 170-190°C and an injection pressure of 5 Bar. The tensile strength value of the composite decreased by 0.14% from the tensile strength value of pure PLA it’s cause of the characteristic of chitosan and HAp were stiff and brittle.
References
FREYMAN, T.M., YANNAS, I.V., GIBSON, L.J., “Cellular Materials As Porous Scaffolds For Tissue Engineering” Progress in Material Science, v. 46, I. 3-4, pp. 273–82, 2001.
RATAJSKA, M., BORYNIEC, S., “Physical And Chemical Aspects of Biodegradation of Natural Polymers”, Reactive Functional Polymers, v. 38, pp. 35–49, September. 1998.
SANTIN, M., HUANG, S.J., IANNACE, S., AMBROSIO, L., NICOLAIS, L., PELUSO, G., “Synthesis And Characterization Of A New Interpenetrated Poly(2-Hydroxyethylmethacrylate)-Gelatin Composite Polymer”, Biomaterials, v. 17, I. 14, pp. 59–67, 1996.
SINGH, S., SINGH, G., PRAKASH, C., RAMAKRISHNA, S., LAMBERTI, L., PRUNCU, C.I., “3D Printed Biodegradable Composites: An Insight Into Mechanical Properties of PLA/Chitosan Scaffold”, Polymer Testing, v. 89, pp. 106722, September. 2020.
LI, G., ZHAO, M., XU, F., YANG, B., LI, X., MENG, X., TENG, L., SUN, F., LI, Y., “Synthesis and Biological Application of Polylactic Acid” Molecules, v. 25, pp. 5023, October. 2020.
GALLOS, A., CROWET, J.M., MICHELY, L., RAGHUWANSHI, V.S., MENTION, M.M., LANGLOIS, V., DAUCHEZ, M., GARNIER, G., ALLAIS, F., “Blending Ferulic Acid Derivatives and Polylactic Acid into Biobased and Transparent Elastomeric Materials with Shape Memory Properties”, Biomacromolecules, v. 22, pp. 1568-1578, March. 2021.
SINGH, R., SINGH, G., SINGH, J., KUMAR, R., “Investigations for Tensile, Compressive and Morphological Properties of 3D Printed Functional Prototypes of PLA-PEKK-Hap-CS”, Journal of Thermoplastic and Composite Material, v. 34, pp. 1-20, August. 2019.
DONG, Y., LI, P., CHEN, C.B., WANG, Z.H., MA, P., CHEN, G.Q., “The Improvement of Fibroblast Growth on Hydrophobic Biopolyesters by Coating with Polyhydroxyalkanoate Granule Binding Protein Phap Fused with Cell Adhesion Motif RGD”, Biomaterials, v. 31, pp. 8921–8930, 2010.
ESTRADA, S.A, ARIZ, I.O.A., GARCÍA, A.T., PAZ, J.F., ALEZ, C.A.G., “Evaluation of In Vitro Bioactivity of 45s5 Bioactive Glass/Poly Lactic Acid Scaffolds Produced by 3D Printing”, Int. J. Compos. Mater., v. 7, pp. 144-149. 2017.
MATHEW, A.P., OKSMAN, K., SAIN, M., “Mechanical Properties of Biodegradable Composites From Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC)”, J. Appl. Polym. Sci., V. 97, pp. 2014-2025, 2005.
HERNANDEZ, Y.G.T., DIAZ, G.M.O., JURADO, L.T., JIMENEZ, N.S.C., TORRES, A.A., PEREZ, B.E.G., RAMIREZ, H.B., “Biological Compatibility of a Polylactic Acid Composite Reinforced with Natural Chitosan Obtained from Shrimp Waste”, Materials, v. 18, pp. 1465, 2018.
ALMEIDA, C.R., SERRA, T., OLIVEIRA, M.I., PLANELL, J.A., BARBOSA, M.A., NAVARRO, M., “Impact of 3-D Printed PLA-And Chitosan-Based Scaffolds on Human Monocyte/Macrophage Responses: Unraveling The Effect of 3-D Structures on Inflammation”, Acta Biomaterialia, v. 10, pp. 613-622, February 2014.
TANAKA, M., HAYASHI, T., MORITA, S., “The Roles of Water Molecules at The Biointerface of Medical Polymers”, Polymer Journal, v. 45(7), pp. 701, 2013.
KEOGH, M.B., O’BRIEN, F.J., DALY, J.S., “A Novel Collagen Scaffold Supports Human Osteogenesis Applications for Bone Tissue Engineering”, Cell Tissue Res, v. 340(1), pp. 169–177. 2010.
IBRAHIM, M.Z., SARHAN, A.A., YUSUF, F., HAMDI, M., “ Biomedical Materials and Techniques to Improve The Tribological, Mechanical and Biomedical Properties of Orthopedic Implants—A Review Article”, Journal Alloy Compd, v. 714, pp. 636–667. 2017.
KHOR, E., LIM, L.Y., “Implantable Applications of Chitin And Chitosan” Biomaterials, v. 24, pp. 2339–2349, January. 2003.
MADIHALLY, S.V., MATTHEW, H.W., “Porous Chitosan Scaffolds for Tissue Engineering”, Biomaterials, v. 20, pp. 1133-1142, June. 1999.
MI, F.L., SHYU, S.S., WU, Y.B., LEE, S.T., SHYONG, J.Y., HUANG, R.N., “Fabrication and Characterization of A Sponge-Like Asymmetric Chitosan Membrane as a Wound Dressing”, Biomaterials, v. 22(2), pp. 165–173. 2001.
WANG, M., BONFIELD, W., “Chemically Coupled HAp–Polyethylene Composites: Structure and Properties”, Biomaterials, v. 22(11), pp. 1311–1320. 2001.
RANJAN, N., SINGH, R., AHUJA, IPS., “Material Processing of PLA-HAp-CS-Based Thermoplastic Composite Through Fused Deposition Modeling for Biomedical Applications”, Biomanufacturing, pp. 123-136, 2019.
TAIB, R.M., GHALEB, Z.A., ISHAK, M.A.SRI., “Thermal, Mechanical, and Morphological Properties of Polylactic Acid Toughened with an Impact Modifier’, Journal of Applied Polymer Science, v. 123, pp. 2715–2725, March. 2012.
AHMED, J., MULLA, M., ARFAT, Y.A., THAI, L.A., “Mechanical, Thermal, Structural And Barrier Properties Of Crab Shell Chitosan/Graphene Oxide Composite films”, Food Hydrocolloids, v. 71, pp. 141-148, October. 2017.
MI, H.Y., SALICK, M.R., JING, X., JACQUES, JACQUES, B.R., CRONE, W.C., PENG, X.F., TURNG, L.S., “Characterization of Thermoplastic Polyurethane/Polylactic Acid (TPU/PLA) Tissue Engineering Scaffolds Fabricated by Microcellular Injection Molding”, Material Science and Engineering C, v. 33, pp. 4767–4776, August. 2013.
FERRI, J.M., JORDA, J., MONTANES, N., FENOLLAR, O., BALART, R., “Manufacturing and Characterization of Poly(Lactic Acid) Composites”. Journal of Thermoplastic Composite Materials, v. 31(7). pp. 865-881. 2017.
CHAKRAVARTY, J., RABBI, M.F., CHALIVENDRA, V., FERREIRA, T., BRIGHAM, C.J., “Mechanical And Biological Properties of Chitin/Polylactide (PLA)/HAp (HAP) Composites Cast Using Ionic Liquid Solutions”, Biological Macromolecules, v. 151, pp. 1213-1223, May. 2020.
BUJANG, A., ‘ADILA, S.N., SUYATMA, N.E, ”Physical Properties of Chitosan Films as Affected by Concentration of Lactic Acid and Glycerol”. 2013 4th International Conference on Biology, Environment and Chemistry, v. 58. 2013.
NAFIYANTO, I., “Pembuatan Plastik Biodegradable Dari Limbah Bonggol Pisang Kepok Dengan Plasticizer Gliserol Dari Minyak Jelantah Dan Komposit Kitosan Dari Limbah Cangkang Bekicot (Achatina Fullica)”, Jurnal Kimia Kemasan, v. 41(1). pp.37–44. 2019.
HAYATI, K., SETYANINGRUM, C.C., FATIMAH, S., “Pengaruh Penambahan Kitosan terhadap Karakteristik Plastik Biodegradable dari Limbah Nata de Coco dengan Metode Inversi Fasa”, Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, v. 4 (1), pp. 9-14, 2020.
AKINDOYO, J.O., BEG, M.D.H., GHAZALI, S., HEIM, H.P., FELDMANN, M., “Impact Modified PLA-HAp Composites – Thermo-Mechanical Properties”, Composites Part A, v. 107, pp. 326-333. 2018.
KIM, I., VISWANATHAN, K., KASI, G., SADEGHI, K., THANAKKASARANEE, S., SEO, J., “Poly(Lactic Acid)/ZnO Bionanocomposite Films with Positively Charged ZnO as Potential Antimicrobial Food Packaging Materials”, Polymers, v. 11, pp. 1427-1444. 2019.
NAZEER, M.A., ONDER, O.C., SEVGILI, I., YILGOR, E., KAVAKLI, I.H., YILGOR, I., “3D Printed Poly(Lactic Acid) Scaffolds Modified with Chitosan and Hydroxyapatite for Bone Repair Applications”, Materials Today Communications, v. 25. 2020.
NG, H.M., BEE, S.T., SIN, L.T., RATNAM, C.T., RAHMAT, A.R., “Interaction Effect of Scomberomorus Guttatus-Derived Hydroxyapatite and Montmorillonite on the Characteristicof Polylactic Acid Blends for Biomedical Application”, Journal of Polymer Research, v. 27, pp. 215. 2020.
HIDAYAT, W. INA-RXiv. https://osf.io/preprints/inarxiv/6bmfu/. Diakses Januari 2023.
FARAH, S., ANDERSON, D.G., LANGER, R., “Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review”, Advanced Drug Delivery Reviews, v. 107, pp. 367-392. 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dina Novera Serfandi, Putu Hadi Setyarini, Purnami Purnami, Sulistyono Sulistyono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.