ANALYSIS OF COCONUT FIBER REINFORCED COMPOSITES WITH HOT PRESS TECHNIQUES
DOI:
https://doi.org/10.21776/jrm.v15i1.1452Keywords:
HDPE Plastic, Coconut Fiber, Composite Board, Tensile TestAbstract
Natural fibre waste is a material with high material resistance, including fibres derived from coconut fruit. Coconut fruit waste is frequently underutilised and can contribute to environmental pollution if not handled correctly. This study's objective is to convert waste from coconuts into fibres, incorporate them into composite mixtures, and produce robust materials. Using coconut fibre presents a significant advantage in that it is easily biodegradable, reducing environmental pollution. The aim of this research is to produce a composite board material using HDPE plastic and coconut fibre, which is resistant to corrosion, through the hot felting method. This method of producing composite materials results in minimal voids and high material density, effectively reducing the chances of material failure. The composite specimens were subjected to testing following the ASTM D 638-01 standard. Technical abbreviations used throughout the text will be explained upon first use. The study achieved an excellent average tensile strength, strain, and elastic modulus of 22.45 MPa, 7.15%, and 5.13 MPa, respectively. The manufacture of composite materials using coconut coir fibre combined with HDPE plastic through the hot felting method resulted in high material strength, corrosion resistance, and reprocessability.
References
H. Pulikkalparambil, D. Nandi, S. M. Rangappa, S. Prasanth, and S. Siengchin, “Polymer composites from natural fibers and recycled waste surgical masks during COVID-19 pandemic,” Polym Compos, vol. 43, no. 6, pp. 3944–3950, Jun. 2022, doi: 10.1002/pc.26668.
M. Y. Khalid, Z. U. Arif, W. Ahmed, and H. Arshad, “Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials,” Sustainable Materials and Technologies, vol. 31. Elsevier B.V., Apr. 01, 2022. doi: 10.1016/j.susmat.2021.e00382.
M. A. Muflikhun and T. Yokozeki, “Experimental and numerical analysis of CFRP-SPCC hybrid laminates for automotive and structural applications with cost analysis assessment,” Compos Struct, vol. 263, May 2021, doi: 10.1016/j.compstruct.2021.113707.
A. Fahmi Johari and D. Teguh Santoso, “Pengaruh Temperatur terhadap Pembuatan Papan Komposit Sekam Padi Berbasis Limbah HDPE menggunakan Metode Hot Press,” 2021. [Online]. Available: https://jurnal.polines.ac.id/index.php/rekayasa
E. García et al., “Mechanical, dynamic and tribological characterization of HDPE/peanut shell composites,” Polym Test, vol. 98, Jun. 2021, doi: 10.1016/j.polymertesting.2021.107075.
M. F. Ezzahrae, A. Nacer, E. Latifa, Z. Abdellah, I. Mohamed, and J. Mustapha, “Thermal and mechanical properties of a high-density polyethylene (HDPE) composite reinforced with wood flour,” Mater Today Proc, 2022, doi: 10.1016/j.matpr.2022.08.394.
T. Anto and C. R. Rejeesh, “Synthesis and characterization of recycled HDPE polymer composite reinforced with nano-alumina particles,” Mater Today Proc, 2022, doi: 10.1016/j.matpr.2022.11.190.
R. Kumar and S. Chauhan, “Effect of ammonium polyphosphate as synergist with nano silica dioxide on flammability of boron compound pretreated bamboo flour-HDPE composite,” Fire Saf J, vol. 133, Oct. 2022, doi: 10.1016/j.firesaf.2022.103647.
A. Asri, “Analisis Pengaruh Ukuran Serat Terhadap Sifat Fisis dan Mekanis Papan Komposit Berbahan Serat Batang Pisang Kepok,” vol. 9, no. 3, pp. 221–227, 2021.
M. K. Singh, R. Tewari, S. Zafar, S. M. Rangappa, and S. Siengchin, “A comprehensive review of various factors for application feasibility of natural fiber-reinforced polymer composites,” Results in Materials, vol. 17, p. 100355, Mar. 2023, doi: 10.1016/j.rinma.2022.100355.
M. K. Singh, G. Arora, R. Tewari, S. Zafar, H. Pathak, and A. K. Sehgal, “Effect of pine cone filler particle size and treatment on the performance of recycled thermoplastics reinforced wood composites,” Mater Today Proc, vol. 62, no. P14, pp. 7358–7363, Jan. 2022, doi: 10.1016/j.matpr.2022.02.022.
M. Núñez-Decap, A. Wechsler-Pizarro, and M. Vidal-Vega, “Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones,” Sustainable Materials and Technologies, vol. 29, Sep. 2021, doi: 10.1016/j.susmat.2021.e00300.
R. Tewari, M. K. Singh, S. Zafar, and S. Powar, “Parametric optimization of laser drilling of microwave-processed kenaf/HDPE composite,” Polymers and Polymer Composites, vol. 29, no. 3, pp. 176–187, Mar. 2021, doi: 10.1177/0967391120905705.
Q. Wu et al., “Design and fabrication of carbon-fiber-wound composite pressure vessel with HDPE liner,” International Journal of Pressure Vessels and Piping, p. 104851, Dec. 2022, doi: 10.1016/j.ijpvp.2022.104851.
Y. Irwan, “Karakteristik akustik papan komposit serat sabut kelapa bermatrik keramik.”
C. Iswan, B. Maryanti, and K. Arifin, SNITT-Politeknik Negeri Balikpapan 2018. Comparative analysis of the variation strength of fiber composite volume faction composite on mechanical properties of composite with epoxy resin matrix.
A. Ali et al., “Hydrophobic treatment of natural fibers and their composites—A review,” Journal of Industrial Textiles, vol. 47, no. 8. SAGE Publications Ltd, pp. 2153–2183, May 01, 2018. doi: 10.1177/1528083716654468.
M. K. Singh, R. Tewari, S. Zafar, S. M. Rangappa, and S. Siengchin, “A comprehensive review of various factors for application feasibility of natural fiber-reinforced polymer composites,” Results in Materials, vol. 17, p. 100355, Mar. 2023, doi: 10.1016/j.rinma.2022.100355.
R. Tewari, M. K. Singh, S. Zafar, and S. Powar, “Parametric optimization of laser drilling of microwave-processed kenaf/HDPE composite,” Polymers and Polymer Composites, vol. 29, no. 3, pp. 176–187, Mar. 2021, doi: 10.1177/0967391120905705.
M. F. Ezzahrae, A. Nacer, E. Latifa, Z. Abdellah, I. Mohamed, and J. Mustapha, “Thermal and mechanical properties of a high-density polyethylene (HDPE) composite reinforced with wood flour,” Mater Today Proc, 2022, doi: 10.1016/j.matpr.2022.08.394.
Q. Wu et al., “Design and fabrication of carbon-fiber-wound composite pressure vessel with HDPE liner,” International Journal of Pressure Vessels and Piping, p. 104851, Dec. 2022, doi: 10.1016/j.ijpvp.2022.104851.
M. A. Muflikhun, R. Higuchi, T. Yokozeki, and T. Aoki, “Failure mode analysis of CFRP-SPCC hybrid thin laminates under axial loading for structural applications: Experimental research on strain performance,” Compos B Eng, vol. 172, pp. 262–270, Sep. 2019, doi: 10.1016/j.compositesb.2019.05.049.
M. A. Muflikhun and B. Fiedler, “Failure Prediction and Surface Characterization of GFRP Laminates: A Study of Stepwise Loading,” Polymers (Basel), vol. 14, no. 20, Oct. 2022, doi: 10.3390/polym14204322.
A. D. Nugraha, M. I. Nuryanta, L. Sean, K. Budiman, M. Kusni, and M. A. Muflikhun, “Recent Progress on Natural Fibers Mixed with CFRP and GFRP: Properties, Characteristics, and Failure Behaviour,” Polymers, vol. 14, no. 23. MDPI, Dec. 01, 2022. doi: 10.3390/polym14235138.
M. A. Muflikhun, T. Yokozeki, and T. Aoki, “The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures,” Compos Struct, vol. 220, pp. 11–18, Jul. 2019, doi: 10.1016/j.compstruct.2019.03.094.
A. Samadam, R. Vallepalli, K. Neeraj Kumar, M. Sreekanth, and R. Raman Goud, “Mechanical properties evaluation and behaviour of cellulose-HDPE composite,” Mater Today Proc, vol. 62, pp. 3405–3410, Jan. 2022, doi: 10.1016/j.matpr.2022.04.271.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Akhsin Muflikhun, Seno Darmanto, Alvin Dio Nugroho, Nur Kholis Fathurrohman , Imam Saputra , Muhammad Kusni

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.