METODE PENINGKATAN KETAHANAN RETAK RESIN POLYESTER DENGAN PENAMBAHAN PROSENTASE VINYL ESTER

Authors

  • Nusyirwan mechanical
  • Yul Hizhar
  • Adam Malik

DOI:

https://doi.org/10.21776/jrm.v15i3.1436

Keywords:

Polyester, Vinyl Ester, Cross-linking

Abstract

In previous studies, hybrid crash boxes have been developed because it show better energy absorption characteristics. Circular hybrid crash box combine the advantages of low-density of composite with stable deformation of metal provide a potential energy absorption device. Tests were carried out experimentally and iumerically under frontal load. This study aims to determine the energy absorption characteristics of two different configuration of hybrid material compositions using Aluminum Alloy 6063 and T300-epoxy Carbon Fiber composites. Present two typical configurational schemes, namely Al-Ko (i.e. a metal outer tube internally filled with an inner carbon fiber reinforced plastic (CFRP) tube) and Ko-Al (i.e. an outer composite tube internally filled with an inner metal tube). Composite layups arrangement with fiber orientation direction [0,90]10. First, the simulation models were developed and validated by comparing the damage modes and crashworthiness indictors with the dedicated experimental study. Second, the interactive effects of different configuration hybrid tubes were investigated by analyzing the discrepancies in the deformation pattern and internal energy absorption of each material through the validated simulation models. The test results show that the greatest energy absorption occurs in the Al-Ko model of 7401.4 J. This hybrid crash box has an energy absorption value of 11% greater compared to the sum of the energy absorption of aluminum tubes (3746.5 J) and composite tubes (2923.4 J).

References

H. Adam, “Carbon fibre in automotive applications,” Mater. Des., vol. 18, no. 4–6, pp. 349–355, 1997, doi: 10.1016/s0261-3069(97)00076-9.

Nusyirwan, H. Abral, M. Hakim, and R. Vadia, “The potential of rising husk fiber/native sago starch reinforced biocomposite to automotive component,” IOP Conf. Ser. Mater. Sci. Eng., vol. 602, no. 1, 2019, doi: 10.1088/1757-899X/602/1/012085.

M. T. Albdiry, B. F. Yousif, and H. Ku, “Fracture toughness and toughening mechanisms of unsaturated polyester-based clay nanocomposites,” 13th Int. Conf. Fract. 2013, ICF 2013, vol. 5, pp. 3446–3455, 2013.

N. Adnan, H. Abral, D. H, and E. Staria, “Identification of Mechanical Strength for Mixture of Thermoset Polyester with Thermoset Vinyl Ester due to Bending Load,” JMPM (Jurnal Mater. dan Proses Manufaktur), vol. 6, no. 1, pp. 19–25, 2022, doi: 10.18196/jmpm.v6i1.14450.

J. S. Ullett and R. P. Chartoff, “Toughening of unsaturated polyester and vinyl ester resins with liquid rubbers,” Polym. Eng. Sci., vol. 35, no. 13, pp. 1086–1097, 1995, doi: 10.1002/pen.760351304.

M. T. Albdiry and B. F. Yousif, “Toughening of brittle polyester with functionalized halloysite nanocomposites,” Compos. Part B Eng., vol. 160, no. October 2018, pp. 94–109, 2019, doi: 10.1016/j.compositesb.2018.10.032.

A. A. Betelie, Y. T. Megera, D. T. Redda, and A. Sinclair, “Experimental investigation of fracture toughness for treated sisal epoxy composite,” AIMS Mater. Sci., vol. 5, no. 1, pp. 93–104, 2018, doi: 10.3934/matersci.2018.1.93.

M. T. Islam et al., “Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites,” Chem. Mater. Eng., vol. 5, no. 4, pp. 75–82, 2017, doi: 10.13189/cme.2017.050401.

M. Santiam, R. Drainage, and W. Cascades, “The Applicability of Linear Elastic Fracture Mechanics to Compressive Damage of the Carbon Fiber Reinforced Plastic Matrix,” 2019.

Q. Meng and T. Wang, “An improved crack-bridging model for rigid particle-polymer composites,” Eng. Fract. Mech., vol. 211, no. January, pp. 291–302, 2019, doi: 10.1016/j.engfracmech.2019.02.028.

A. Budiman and S. Sugiman, “Karakteristik Sifat Mekanik Komposit Serat Bambu Resin Polyester Tak Jenuh Dengan Filler Partikel Sekam,” Din. Tek. Mesin, vol. 6, no. 1, pp. 76–82, 2016, doi: 10.29303/d.v6i1.28.

N. Hiremath, S. Young, H. Ghossein, D. Penumadu, U. Vaidya, and M. Theodore, “Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications,” Compos. Part B Eng., vol. 198, no. May, p. 108156, 2020, doi: 10.1016/j.compositesb.2020.108156.

G. R. Arpitha, M. R. Sanjay, and B. Yogesha, “Review on Comparative Evaluation of Fiber Reinforced Polymer Matrix Composites,” Adv. Eng. Appl. Sci. An Int. J., vol. 4, no. 4, pp. 44–47, 2014.

a Standard, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annu. B. ASTM Stand., vol. 99, no. Reapproved, pp. 1–9, 1996, doi: 10.1520/D5045-99R07E01.2.

R. Masoodi, R. E. Hajjar, K. M. Pillai, A. Javadi, and R. Sabo, “An experimental study on crack propagation in green composites made from cellulose nanofibers and epoxy,” Int. SAMPE Tech. Conf., no. February 2016, 2011.

P. K. Naik, N. V. Londe, B. Yogesha, L. Laxmana Naik, and K. V. Pradeep, “Mode i Fracture Characterization of Banana Fibre Reinforced Polymer Composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 376, no. 1, 2018, doi: 10.1088/1757-899X/376/1/012041.

N. Adnand, R. Mutya, F. Ridwan, H. Abral, H. Dahlan, and E. Satria, “Pengaruh Variasi Persentase Campuran Polymer Polyester dan Vinyl Ester Terhadap Kekuatan Tegangan Lentur,” Met. J. Sist. Mek. dan Termal, vol. 5, no. 2, p. 126, 2021, doi: 10.25077/metal.5.2.126-131.2021.

and A. M. T. A. S. A. N. Mohammed, E.S Zainudin, S. M. Sapuan, M. D. Azaman, “Introduction to Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites,” Elsevier Ltd, 2018.

D. S. Longnecker, Background and perspective, vol. 9781441964. ACADEMIC PRESS, INC, 2013.

V. Fiore, L. Calabrese, T. Scalici, P. Bruzzaniti, and A. Valenza, “Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map,” Compos. Part B Eng., vol. 148, no. February, pp. 40–48, 2018, doi: 10.1016/j.compositesb.2018.04.044.

A. Mahyudin, S. Arief, H. Abral, Emriadi, M. Muldarisnur, and M. P. Artika, “Mechanical properties and biodegradability of areca nut fiber-reinforced polymer blend composites,” Evergreen, vol. 7, no. 3, pp. 366–372, 2020, doi: 10.5109/4068618.

D. Frómeta et al., “Identification of fracture toughness parameters to understand the fracture resistance of advanced high strength sheet steels,” Eng. Fract. Mech., vol. 229, no. February, p. 106949, 2020, doi: 10.1016/j.engfracmech.2020.106949.

C. V. Opelt, G. M. Cândido, and M. C. Rezende, “Fractographic study of damage mechanisms in fiber reinforced polymer composites submitted to uniaxial compression,” Eng. Fail. Anal., vol. 92, no. June, pp. 520–527, 2018, doi: 10.1016/j.engfailanal.2018.06.009.

H. Ardhyananta et al., “Mechanical and Thermal Properties of Unsaturated Polyester/Vinyl Ester Blends Cured at Room Temperature,” IOP Conf. Ser. Mater. Sci. Eng., vol. 202, no. 1, 2017, doi: 10.1088/1757-899X/202/1/012088.

K. Liu, S. He, Y. Qian, Q. An, A. Stein, and C. W. Macosko, “Nanoparticles in Glass Fiber-Reinforced Polyester Composites: Comparing Toughening Effects of Modified Graphene Oxide and Core-Shell Ru

Downloads

Published

2024-12-15

How to Cite

Nusyirwan, N., Hizhar, Y., & Malik , A. (2024). METODE PENINGKATAN KETAHANAN RETAK RESIN POLYESTER DENGAN PENAMBAHAN PROSENTASE VINYL ESTER . Jurnal Rekayasa Mesin, 15(3), 1751–1760. https://doi.org/10.21776/jrm.v15i3.1436

Issue

Section

Articles