TINJAUAN PENGEMBANGAN MATERIAL BERBASIS BARIUM TITANAT, KOMPOSIT PVDF/BATIO3 DAN BATIO3/HAP UNTUK APLIKASI ELECTROSTATIC DIELECTRIC ENERGY STORAGE CAPACITOR
DOI:
https://doi.org/10.21776/jrm.v14i2.1423Keywords:
BaTiO3, PVDF, HAp, Energy Storage, CapacitorAbstract
Barium titanate (BaTiO3) is ceramic material that is widely used in various applications..Electrostatic dielectric energy storage capacitor is one of the application of Barium titanate (BaTiO3) material. Composite materials based on barium titanate (BaTiO3) such as Polyvinylidene fluoride (PVDF)/BaTiO3 and BaTiO3/HAp Hydroxyapatite have been developed to improve the electrical properties of the materials. Many research have been reported hat barium titanate in nano phase has a maximum dielectric constant 5000 with particle size range of 30-50 nm. The addition of BaTiO3 composition as a filler to PVDF/BaTiO3 composite caused increasing of dielectric constant compared to the dielectric constant properties of the PVDF. Similar results also found on BaTiO3/HAp composite. From this review, it was also found that the composite of these three materials is a candidate for future material to improve the electrical properties of PVDF which have been applied to electrostatic dielectric energy storage capacitor applications.
References
Bhalla, A. S., Saxena, A., Guo, R., and Taylor, G. W., “100th anniversary of the discovery of ferroelectricity: How it impacted the current day physics,” Ferroelectrics, vol. 569, no. 1, pp. 348–356, 2020
Jain, A., Wang, Y. G., and Shi, L. N., “Recent developments in BaTiO3 based lead-free materials for energy storage applications,” J. Alloys Compd., vol. 928, p. 167066, 2022
Levanyuk, A. P., Misirlioglu, I., B., and Okatan, M. B., “Landau, Ginzburg, Devonshire and others,” Ferroelectrics, vol. 569, no. 1, pp. 310–323, 2020.
Wang, L., Yu, J., Wang, Y., Peng, G., Liu, F., and Gao, J., “Modeling ferroelectric capacitors based on the dipole switching theory,” J. Appl. Phys., vol. 101, no. 10, pp. 104505–2849, 2007.
Adnan, S. R., “Landau-Khalatnikov modified model for predicting ZnO ferroelectric properties,” AIP Conf. Proc., vol. 2043, November, 2018.
Wang, L., Yu, J., Wang, Y., Peng, G., Liu, F., and Gao, J., “Modeling ferroelectric capacitors based on the dipole switching theory,” J. Appl. Phys., vol. 101, no. 10, pp. 1–8, 2007.
Miller, S. L., Nasby, R. D., Schwank, J. R., Rodgers, M. S., and Dressendorfer, P. V.,“Device modeling of ferroelectric capacitors,” J. Appl. Phys., vol. 68, no. 12, pp. 6463–6471, 1990.
Wang, Y. L., Wang, X. Y., Chu, L. Z., Deng, Z., C., Liang, W., H., Liu, B., T., Fu, G., S., Wongdamnern, N., Sareein, T., Yimnirun., R., “Simulation of hysteresis loops for polycrystalline ferroelectrics by an extensive Landau-type model,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 373, no. 46, pp. 4282–4286, 2009.
Vijatović, M. M., Bobić, J. D., and Stojanović, B. D., “History and challenges of barium titanate: Part I,” Sci. Sinter., vol. 40, no. 2, pp. 155–165, 2008.
Vijatović, M. M., Bobić, J. D., and Stojanović, B. D., “History and challenges of barium titanate: Part II,” Sci. Sinter., vol. 40, no. 3, pp. 235–244, 2008.
Al Shaqsi, A. Z., Sopian, K., and Al-Hinai, A., “Review of energy storage services, applications, limitations, and benefits,” Energy Reports, vol. 6, pp. 288–306, 2020.
Adnan, S. R., Hikam, M., and Rizky, E.,“Crystallographic and Electrical Properties of Barium Zirconium Titanate Doped by Indium and Lanthanum,” Adv. Mater. Res., vol. 896, pp. 347–350, 2014.
Hikam, M., Suastiyanti, D., Adnan, S. R., and Soegijono, B., “The influence of BTO-BHF different composition on its ferroelectric properties,” J. Phys. Conf. Ser., vol. 495, no. 1, pp. 1–9, 2014.
Relaxor, P. L.,Review, F. A., Benes, F., Gindel, T., and Deluca, M., “Strategies to Improve the Energy Storage Properties of Perovskite Lead-Free Relaxor Ferroelectrics: A Review,” 2020.
Wu, X.,Chen, X., Zhang, Q. M., and Tan, D. Q., “Advanced dielectric polymers for energy storage,” Energy Storage Mater., vol. 44, no. August 2021, pp. 29–47, 2022
Bouharras, F. E., Raihane, M., and Ameduri, B., “Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications,” Prog. Mater. Sci., vol. 113, March, p. 100670, 2020.
Rajeevan, S., John, S., and George, S. C., “Polyvinylidene fluoride: A multifunctional polymer in supercapacitor applications,” J. Power Sources, vol. 504, no. January, p. 230037, 2021.
Jiao, H., Zhao, K., Bian, T., and Tang, Y., “Hydrothermal synthesis and properties characterization of barium titanate/hydroxyapatite spherical nanocomposite materials,” J. Alloys Compd., vol. 715, pp. 73–82, 2017.
Jiao, H., Zhao, K., Ma, L., Tang, Y., Liu, X., and Bian, T., “Preparation and characterization of BaTiO3/HA nanocomposite materials by hydrothermal synthesis,” J. Alloys Compd., vol. 693, pp. 221–225, 2017.
Paramonova, E. V., Bystrov, V. S., Meng, X., Shen, H., Wang, J., and Fridkin, V. M., “Polarization switching in nanoscale ferroelectrics,” Ferroelectrics, vol. 575, no. 1, pp. 103–116, 2021.
Gheno, S. M., Hasegawa, H. L.. and Filho, P. I. P., “AFM characterization of barium titanate,” Ferroelectrics, vol. 334, no. 1, pp. 43–48, 2006
Kholodkovam, A. A., Danchevskaya, N., Ivakin, Y. D., Smirnov, A. D., Ponomarev, S. G., Fionov, A. S., Kolesov, V. V., “Solid state synthesis of barium titanate in air and in supercritical water: Properties of powder and ceramics,” Ceram. Int., vol. 45, no. 17, pp. 23050–23060, 2019
Kainth, S., Choudhary, R., Upadhyay, S., Bajaj, P., Sharma, P., Brar, L.K., Pandey, O.P., “Non-isothermal solid-state synthesis kinetics of the tetragonal barium titanate,” J. Solid State Chem., vol. 312, p. 123275, May, 2022
Song, S., Kim, D. H., Jeong, E. J., Choi, M., Kim, Y., Jung, H. J., Choi, M. Y., “Effects of particle size and polymorph type of TiO2 on the properties of BaTiO3 nanopowder prepared by solid-state reaction,” Environ. Res., vol. 202, p. 111668, July, 2021
Padchasrin. J., Triamnak, Sareein, T., Jutimoosik, J., Tongsaeng, S., Bootchanont, A., Kidkhunthod, P., Rujirawat, S., Manyum, P., Yimnirun, R.,“Crystal structure and XANES study of Fe-substituted Barium Titanate ceramics prepared by conventional solid-state technique,” Radiat. Phys. Chem., vol. 188, January, p. 109657, 2021
Jaita, P., Boothrawong, N., Lertcumfu, N., Malasri, P., Jarupoomc, P., “Electrical and Mechanical Properties of Modified Barium Titanate by Doping an M-Type Hexagonal Ferrites,” Integr. Ferroelectr., vol. 214, no. 1, pp. 2–10, 2021
Pahuja, P., Tomar, A., and Tandon, R. P., “Improved properties in Dy3+ substituted barium titanate,” Integr. Ferroelectr., vol. 186, no. 1, pp. 49–53, 2018
Korotkov, L. N., Korotkova, T. N., Emelianov, N. A., Eremina, R. M.., Batulin, R. G., Cherosov, M. A., and Al’ Jaafari, F. D., “Influence of oxygen vacancies on magnetic and dielectric properties of nanocrystaline barium titanate,” Ferroelectrics, vol. 567, no. 1, pp. 264–270, 2020
Pavlov, D. P., Batalov, R. I., Leontyev, A. V., Zharkov, D. K., Migachev, S. A., Lunev, I. V., Mukhortov, V. M., Shaposhnikova, T. S., and Mamin, R. F., “Investigation of the barium strontium titanate films on the silicon substrate,” Ferroelectrics, vol. 575, no. 1, pp. 117–122, 2021
Pahuja, P., Tomar, A., and Tandon, R. P., “Modification in properties of barium titanate on Sm3+ substitution,” Ferroelectrics, vol. 516, no. 1, pp. 127–130, 2017
Batalov, R. I., Zharkov, D. K., Pavlov, D. P., Migachev, S. A., Lunev, I. V., Elshin, A. S., Leontyev, A. V., Chibirev, A. O., Shaposhnikova, T. S., and Mamin, R. F., “Properties of the barium strontium titanate film on the silicon substrate,” Ferroelectrics, vol. 559, no. 1, pp. 30–35, 2020
Behera, R., and Elanseralathan, K.,"A review on Polyvinylidene Fluoride Polymer Based nanocomposite for energy storage applications," Journal of Energy Storage, vol. 40, p. 103788, 2022 .
Liu, J., He, X., Wang, F., Zhou, X., and Li, G.,“Dielectric and mechanical properties of polycaprolactone/nano-barium titanate piezoelectric composites,” Plast. Rubber Compos., vol. 50, no. 6, pp. 299–306, 2021
Bi, J., Shan, L., Wu, Z., Fu, X., and Hou, W., “Dielectric properties for strontium barium titanate thin films with different thickness,” Ferroelectrics, vol. 529, no. 1, pp. 113–119, 2018
Kumari, A., and Ghosh, B. D., “Effect of strontium doping on structural and dielectric behaviour of barium titanate nanoceramics,” Adv. Appl. Ceram., vol. 117, no. 7, pp. 427–435, 2018
Panda, M., and Trivedi, A., “Ferroelectric and piezoelectric properties of cold pressed polyvinyledene fluoride/barium titanate nano-composites,” Ferroelectrics, vol. 572, no. 1, pp. 246–257, 2020
Shalu, S., and Ghosh, B. D., “Synthesis, characterisation and dielectric properties of low-loss Zr-doped barium strontium titanate materials,” Adv. Appl. Ceram., vol. 118, no. 8, pp. 451–457, 2019
Surmenev, R. A., Chernozem, R.V., Skirtach, A. G., Bekareva, A. S.,. Leonova, L. A., Mathur, S., Yu, B., Ivanov, F., Surmeneva, M. A., “Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursor,” Ceram. Int., vol. 47, no. 7, pp. 8904–8914, 2021
Li, J., He, K., Zhou, Z. H., Huang, H., Zhang, L., Lou, C. G., and Yu, H. Y., “Influence of feedstock concentration on tetragonality and particle size of hydrothermally synthesized barium titanate powders,” Ceram. Int., vol. 43, no. 17, pp. 14813–14817, 2017
Özen, S. A., Özen, M., Şahin, M., and Mertens, M., “Study of the hydrothermal crystallization process of barium titanate by means of X-ray mass attenuation coefficient measurements at an energy of 59.54 keV,” Mater. Charact., vol. 129, pp. 329–335, 2017
Burgos, M. J. C., Moglia, I., Roa, S., and Fuenzalida, V., “Synthesis of nanostructured BaTiO3 films by hydrothermal modification of Ti surfaces using Ba(OH)2 and oleic acid,” Chem. Phys. Lett., vol. 805, February, 2022
Ries, A., Simões, A. Z., Cilense, M., Zaghete, M. A., and Varela, J. A., “Barium strontium titanate powder obtained by polymeric precursor method,” Mater. Charact., vol. 50, no. 2–3, pp. 217–221, 2003, doi: 10.1016/S1044-5803(03)00095-0.
Vinothini, V., Singh, P., and Balasubramanian, M., “Synthesis of barium titanate nanopowder using polymeric precursor method,” Ceram. Int., vol. 32, no. 2, pp. 99–103, 2006, doi: 10.1016/j.ceramint.2004.12.012.
Da Silva, G. R. A., Perdomo, C. P. F., Klein-Gunnewiek, R. F., and Kiminami, R. H. G. A., “Crystallization kinetic and structural characterization of lead-free piezoelectric 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 by polymeric precursor method,” Mater. Chem. Phys., vol. 277, p. 125494, September, 2021, , 2022
Caminata, L. P., Perdomo, C. P. F., and Kiminami, R. H. G. A., “Effect of microwave heating during evaporation solvent and polymeric precursor formation in synthesis of BaZr0.08Ti0.92O3 nanopowders,” J. Solid State Chem., vol. 291, p. 121586, July, 2020
Mewada, D., “Barium titanate (BaTiO3): A study of Structural, optical and dielectric properties,” Mater. Today Proc., vol. 54, pp. 923–926, 2022
Zhang, Q., Chen, J., and Che, M., “Dielectric properties of barium titanium ceramics doped by lanthanum oxide,” Ferroelectrics, vol. 566, no. 1, pp. 30–41, 2020
Bharadwaj, S., Rao, P. T., Kumar, A. S., and Verma, P. K., “Dielectric Studies of Tin Oxide and Tin Dioxide Added with Barium Titanate,” Integr. Ferroelectr., vol. 230, no. 1, pp. 192–197, 2022
Mehta, A., Sachdev, S., Kumar, P., Sharma, P., and Prakash, C., “Structural, dielectric, ferroelectric and piezoelectric properties of La and Fe substituted barium titanate ceramics,” Phase Transitions, vol. 95, no. 7, pp. 515–522, 2022
Deshpande, V. K., and Borkar, S. N., “Study of dielectric and ferroelectric properties of barium titanate with glass addition for energy storage application,” Ferroelectrics, vol. 571, no. 1, pp. 109–119, 2021
Bhargavi, G. N., Badapanda, T., and Khare, A., “An investigation of structural, electrical and optical properties of lead-free barium zirconium titanate (BZT)-based ceramic compounds,” Phase Transitions, vol. 94, no. 6–8, pp. 474–492, 2021
Singh, B., Padha, B., Verma, S., Satapathi, S., Gupta, V., and Arya, S., “Recent advances, challenges, and prospects of piezoelectric materials for self-charging supercapacitor,” J. Energy Storage, vol. 47, p. 103547, 2022
Shandilya, M., Rai, R., Zeb, A., and Kumar, S., “Modification of structural and electrical properties of Ca element on barium titanate nano-material synthesized by hydrothermal method,” Ferroelectrics, vol. 520, no. 1, pp. 93–109, 2017
Triamnak, N., Wongdamnern, N., Sareein, T., Ngamjarurojana, A., and Yimnirun, R., “Lowering Synthesis Temperature of BaTiO3-Bi(Zn0.5Zr0.5)O3 Ceramics by Salt Flux Assistance and Dielectric Properties Investigations,” Integr. Ferroelectr., vol. 223, no. 1, pp. 162–172, 2022
Behera, R., and Elanseralathan, K., “A review on polyvinylidene fluoride polymer based nanocomposites for energy storage applications,” J. Energy Storage, vol. 48, p. 103788, November, 2022
Zha, J. W., Zheng, M. S., Fan, B. H., and Dang, Z. M., “Polymer-based dielectrics with high permittivity for electric energy storage: A review,” Nano Energy, vol. 89, p. 106438, 2021
Hu, H., Zhang, F., Luo, S., Chang, W., Yue, J., and Wang, C.-H., “Recent advances in rational design of polymer nanocomposite dielectrics for energy storage,” Nano Energy, vol. 74, p. 104844, 2020
Kumar, R. G. A., Biswas, A., Singh, R., Gehlot, A., Akram, S. V., Verma, A. S., “Advances in micro and nano-engineered materials for high-value capacitors for miniaturized electronics,” J. Energy Storage, vol. 55, p. 105591, 2022
Chen, S., Skordos, A., and Thakur, V. K., “Functional nanocomposites for energy storage: chemistry and new horizons,” Mater. Today Chem., vol. 17, p. 100304, 2020
Laasri, H. A., Fasquelle, D., Tachafine, A., Carru, J. C., Rguiti, M., and Elaatmani, M., “Ferroelectric BT–PVDF Composite Thick Films for Electrical Energy Storage,” J. Electron. Mater., vol. 50, no. 3, pp. 1132–1139, 2021
Sharma, M., Gaur, A., and Quamara, J. K., “Swift heavy ions irradiated PVDF/BaTiO3 film as a separator for supercapacitors,” Solid State Ionics, vol. 352, p. 115342, 2020
Guo, R., Luo, H., Yan, M., Zhou, X., Zhou, K., and Zhang, D., “Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires,” Nano Energy, vol. 79, p. 105412, September, 2021
Hao, Y. N., Wang, X. H., O’brien, S., Lombardi, J., and Li, L. T., “Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density,” J. Mater. Chem. C, vol. 3, no. 37, pp. 9740–9747, 2015
Mendez, S. L., Moreira, M. V., Mano, J. F., Schmidt, V. H., and Bohannan, G., “Dielectric behavior in an oriented ß-PVDF film and chain reorientation upon transverse mechanical deformation,” Ferroelectrics, vol. 273, pp. 15–20, 2002
Wang, Y., Hou, Y., and Deng, Y., “Effects of interfaces between adjacent layers on breakdown strength and energy density in sandwich-structured polymer composites,” Compos. Sci. Technol., vol. 145, pp. 71–77, 2017
Shi, Z., Wang, J., Mao, F., Yang, C., Zhang, C., and Fan, R., “Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-: K and negative- k layers,” J. Mater. Chem. A, vol. 5, no. 28, pp. 14575–14582, 2017
Lu, X., Tong, Y., and Cheng, Z. Y., “Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P(VDF-CTFE) nanocomposite films,” J. Alloys Compd., vol. 770, pp. 327–334, 2019
Wittinanon, T., Rianyoi, R., Chaipanich, A. A., “Effect of Polyvinylidene Fluoride on the fracture microstructure characteristics and piezoelectric and mechanical properties of 0-3 barium zirconate titanate ceramic-cement composite". Journal of European Ceramic Socienty, vol. 40, pp. 4886-4893, 2020 .
Maity, S., Sasmal, A. and Sen, S., “Materials Science in Semiconductor Processing Barium titanate based paraelectric material incorporated Poly ( vinylidene fluoride ) for biomechanical energy harvesting and self-powered mechanosensing,” Mater. Sci. Semicond. Process., vol. 153, p. 107128, June, 2023
Liu, S., Xue, S., Zhang, W., Zhai, J., and Chen, G., “The influence of crystalline transformation of Ba0.6Sr0.4TiO3 nanofibers/poly(vinylidene fluoride) composites on the energy storage properties by quenched technique,” Ceram. Int., vol. 41, pp. S430–S434, 2015
Gong, L. Chen, S. H., Zhan, S. P., Sun, X. D.,Yin, B., Liu, Z. Y., Bo, M., “An enhancement on the dielectric performance of poly(vinylidene fluoride)-based composite with graphene oxide-BaTiO3 hybrid,” Nanocomposites, vol. 5, no. 2, pp. 61–66, 2019
Song, Y., Shen, Y., Liu, H., Lin, Y., Li, M., and Nan, C. W., “Improving the dielectric constants and breakdown strength of polymer composites: Effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix,” J. Mater. Chem., vol. 22, no. 32, pp. 16491–16498, 2012
Rosso, J. M., Bonadio, T. G. M., Freitas, F. R., Volnistem, E. A., Dias, G. S, Cótica, L. F., Silva, D. M., Burato, J. A., and Santos, I. A. D., “On the synthesis and characterization of environmentally friendly BTNN-PVDF bulk composites,” Ferroelectrics, vol. 545, no. 1, pp. 70–79, 2019
Silakaew, K., and Thongbai, P., “Silver nanoparticles–deposited sub-micro sized BaTiO3/PVDF composites: greatly increased enhanced constant and effectively suppressed dielectric loss,” Nanocomposites, vol. 8, no. 1, pp. 125–135, 2022
Celebi, H., Duran, S., and Dogan, A., “The effect of core-shell BaTiO3@SiO2 on the mechanical and dielectric properties of PVDF composites,” Polym. Technol. Mater., vol. 61, no. 11, pp. 1191–1203, 2022
Jaschin, P. W., Bhimireddi, R., and Varma, K. B. R., “Enhanced Dielectric Properties of LaNiO3/BaTiO3/PVDF: A Three-Phase Percolative Polymer Nanocrystal Composite,” ACS Appl. Mater. Interfaces, vol. 10, no. 32, pp. 27278–27286, 2018
Brunengo, E., Conzatti, L., Schizzi, I., Costa, C., Buscaglia, M. T., Canu, G., Castellano, M., Buscaglia, V., Stagnaro, P., “PVDF/BaTiO3 composites as dielectric materials: Influence of processing on properties,” AIP Conf. Proc., vol. 1981, pp. 1–5, 2018
Zhao, Y., Zhang, Y., He, Z., Zhang, H., Wang, H., and Zhao, Y., “Enhanced dielectric properties of PVDF-based composite film with BaTiO3@SrTiO3 nanoparticles,” New J. Chem., vol. 46, no. 22, pp. 10577–10583, 2022
Jiao, H., Zhao, K., Shi, R., Ma, Y., Tang, Y., Bian, T., Wang, J., “An investigation of the electrical, mechanical and biocompatibility properties of barium titanate/hydroxyapatite bulk ceramics,” Mater. Chem. Phys., vol. 243, p. 122613, September, 2020
Bystrov, V. S., “Piezoelectricity and pyroelectricity in hydroxyapatite,” Ferroelectrics, vol. 541, no. 1, pp. 25–29, 2019
Lang, S. B., “Review of ferroelectric hydroxyapatite and its application to biomedicine*,” Phase Transitions, vol. 89, no. 7–8, pp. 678–694, 2016
Swain, S., Muneer, S., Sahu, R., Mahapatra, A., Negi, R. R., Samanta, B., Nanda, D. Kumar, P., Dasgupta, S., and Sonia, “Structural, Mechanical and Dielectric Properties of Microwave-Assisted High-Energy Ball Milling Synthesis of Hydroxyapatite,” Integr. Ferroelectr., vol. 205, no. 1, pp. 186–193, 2020
Tofail, S. A. M., Haverty, D., Stanton, K. T., and Mcmonagle, J. B., “Structural order and dielectric behaviour of hydroxyapatite,” Ferroelectrics, vol. 319, pp. 117–123, 2005
You, B. C., Meng, C. E., Nasir, N. F. M., Tarmizi, E. Z. M., Fhan, K. S., Kheng, E. S., Majid, M. S. A., and Jamir, M. R. M., “Dielectric and biodegradation properties of biodegradable nano-hydroxyapatite/starch bone scaffold,” J. Mater. Res. Technol., vol. 18, pp. 3215–3226, 2022
Kayed, F. E., Kayğili Ö, T. S., Bulut, N., Almohazey, D., Ates, T., Al-Ahmari, F. S., Ay, İ., Demirci, T., Kirat, G., Flemban, T., Ince, T., Ghrib, T., Al-Suhaimi, E. A., Ercan, I., “Investigation of structural, spectroscopic, dielectric, magnetic, and in vitro biocompatibility properties of Sr/Ni co-doped hydroxyapatites,” Ceram. Int., vol. 48, no. 18, pp. 26585–26607, 2022
Ercan, I., Kaygili, O., Kayed, T., Bulut, N., Tombuloğlu, H., İnce, T., Al Ahmari, F., Kebiroglu, H., Ates, T., Almofleh, A., Firdolas, F., Köysal, O., Al-Suhaimi, Ebtesam Abdullah Search By Orcid ; Ghrib, Taher ; Sözeri, Hüseyin ; Yildiz, M., Ercan, F., “Structural, spectroscopic, dielectric, and magnetic properties of Fe/Cu co-doped hydroxyapatites prepared by a wet-chemical method,” Phys. B Condens. Matter, vol. 625, p. 413486, January, 2022
Rajhi, F. Y., Yahia, I. S., Zahran, H. Y., and Kilany, M., “Synthesis, structural, optical, dielectric properties, gamma radiation attenuation, and antimicrobial activity of V-doped hydroxyapatite nanorods,” Mater. Today Commun., vol. 26, p. 101981, 2020.
Hendi, A. A., and Yakuphanoglu, F., “Dielectric and ferroelectric properties of the graphene doped hydroxyapatite ceramics,” J. Mol. Struct., vol. 1207, no. 3, p. 127734, 2020
El Khouri, A.., Zegzouti, A., Elaatmani, M., and Capitelli, F., “Bismuth-substituted hydroxyapatite ceramics synthesis: Morphological, structural, vibrational and dielectric properties,” Inorg. Chem. Commun., vol. 110, p. 107568, 2019.
Panda, S., Biswas, C. K., and Paul, S., “A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering,” Ceram. Int., vol. 47, no. 20, pp. 28122–28144, 2021
Das, A., and Pamu, D., “A comprehensive review on electrical properties of hydroxyapatite based ceramic composites,” Mater. Sci. Eng. C, vol. 101, pp. 539–563, 2019
Bowen, C. R., Gittings, J., Turner, I. G., Baxter, F., And Chaudhuri, J. B., “Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites,” Appl. Phys. Lett., vol. 89, no. 13, pp. 1–4, 2006
Swain, S., Bhaskar, R., Mishra, B., Gupta, M. K., Sonia, Dasgupta, S., Kumar, P., “Microstructural, dielectric, mechanical, and biological properties of hydroxyapatite (HAp)/BZT-BCT (0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3) bio-composites with improved mechano-electrical properties for bone repair,” Ceram. Int., vol. 48, no. 17, pp. 24505–24516, 2022
Tavangar, M., Heidari, F., Hayati, R., Tabatabaei, F., Vashaee, D., and Tayebi, L., “Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds,” Ceram. Int., vol. 46, no. 7, pp. 9086–9095, 2020
Senthilkumar, G., Kaliaraj, G. S., Vignesh, P., Vishwak, R. S., Joy, T. N., and Hemanandh, J., “Hydroxyapatite-Barium/strontium titanate composite coatings for better mechanical, corrosion and biological performance,” Mater. Today Proc., vol. 44, pp. 3618–3621, 2021
Dubey, A. K., Basu, B., Balani, K., Guo, R., and Bhalla, A. S., “Multifunctionality of perovskites BaTiO3 and CaTiO3 in a composite with hydroxyapatite as orthopedic implant materials,” Integr. Ferroelectr., vol. 131, no. 1, pp. 119–126, 2011
Qiang, W., Jin, Z., Lijun, Z., Shimin, L., and Yanqin, L., “Investigation and application of HA composite coating on the Ti alloy,” Hydroxyapatite Coatings Biomed. Appl., pp. 261–444, 2013
Muthaiah, V. M. S., Indrakumar, S., Suwas, S., and Chatterjee, K., “Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: A review of recent developments,” Bioprinting, vol. 25, 2021, p. e00180, 2022
Vouilloz, F. J., Castro, M. S., Vargas, G. E., Gorustovich, A., and Fanovich, M. A., “Reactivity of BaTiO3-Ca10(PO4)6(OH)2 phases in composite materials for biomedical applications,” Ceram. Int., vol. 43, no. 5, pp. 4212–4221, 2017
Jiao, H., Zhang, X., Zhao, K., Song, S., Liu, J., Jin, J., and Tang, Y., “An investigation of the hydrophilicity, biocompatibility and biodegradability properties of BT/HA/PHBV micro-nanofibers composite film,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 284, p. 115892, 2022
Dubey, A. K., Basu, B., Balani, K., Guo, R., and Bhalla, A. S., “Dielectric and pyroelectric properties of HAp-BaTiO3 composites,” Ferroelectrics, vol. 423, no. 1, pp. 63–76, 2011
Gittings, J. P., Bowen, C. R., Dent, C. E., Turner, I. G., Baxter, F. R., Cartmell, S., and Chaudhuri, J., “Influence of porosity on polarisation and electrical properties of hydroxyapatite based ceramics,” Ferroelectrics, vol. 390, no. 1, pp. 168–176, 2009
Nugraha, A., Ardin, B., M. dan Rezani, R., "Karakterisasi material polimer PVDF dengan polarisasi permukaan", Jurnal Rekayasa Mesin, v. 8, n. 3, pp. 135-139, 2017
Suputra, I. W. G., Setyarini, H. P., Widodo, T. D., "Pengaruh penambahan hidroksiapatit dan kitosan pada PLA dan ABS terhadap sifat mekanik dari komposit biomaterial", Jurnal Rekayasa Mesin, v. 13, n. 3, pp. 837-846, 2022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Septian Rahmat Adnan, Budhy Kurniawan, Bambang Soegijono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.