PENINGKATAN PRODUKSI BAHAN BAKAR HIDROGEN DENGAN BANTUAN NATURAL SURFACTANT PADA PROSES WATER SPLIT

Authors

  • Purnami Purnami Universitas Brawijaya
  • Fransisca Gayuh Utami Dewi Universitas Brawijaya
  • ING Wardana Universitas Brawijaya
  • Mega Nur Sasongko Universitas Brawijaya
  • M Umar Yusuf Universitas Brawijaya
  • Willy Satrio Nugroho Universitas Brawijaya

DOI:

https://doi.org/10.21776/jrm.v15i1.1413

Keywords:

Water Electrolysis, Natural Surfactant, Rice Straw

Abstract

Hydrogen is an alternative fuel due to its environmental friendliness and abundance. Hydrogen can be produced through water-splitting technique, in which the Oxygen (O2) and Hydrogen (H2) are separated. Water electrolysis is one of many causes of water-splitting that effectively results H2 with high purity. One drawback of electrolysis is the low efficiency. In this study, a rice straw natural surfactant was utilized to improve the efficiency. Rice straw with the volume of 5 ml, 10 ml, dan 15 ml were added to the electrolyte solution. This study shows the rice straw based natural surfactant contains hydrophilic and hydrophobic sides. Both sides capable to reduce the surface tension of the solution which destabilizes water molecules. The aromatic magnetic field of rice straw surfactant homogenizes the water net dipole moment due to the diamagnetism of water. These contributes towards the weakened hydrogen bond of the water in the solution. The synergy between hydrophobic and hydrophilic sides is potent to alter hydrogen production rate through intrinsic magnetism.

References

M. B. Ali, R. Saidur, and M. S. Hossain, “A review on emission analysis in cement industries,” Renewable and Sustainable Energy Reviews. 2011, doi: 10.1016/j.rser.2011.02.014.

Syarif Hidayatullah, Femiana Gapsari, and P. H. Setyarini, “PENGARUH VARIASI KONSENTRASI INHIBITOR DARI KITOSAN SISIK IKAN TERHADAP PERILAKU KOROSI BESI ASTM A36: STUDI EKSTRAPOLARISASI TAFEL DAN EIS,” Rekayasa Mesin, vol. 11, no. 1, pp. 51–59, 2020.

Sulistyono, “Pemanasan Global (Global Warming) Dan Hubungannya Dengan Penggunaan Bahan Bakar Fosil,” Forum Teknol., 2005.

Yustia Wulandari Mirzayanti, “KONVERSI MINYAK BIJI KAPUK MENJADI BIODIESEL MENGGUNAKAN KATALIS CaO/HTC,” Rekayasa Mesin, vol. 3, no. 11, pp. 417–425, 2022.

Slamet wahyudi and P. Purnami, “Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar,” Rekayasa Mesin, vol. 3, no. 2, pp. 337–342, 2012.

Nurdin Hasananto Teguh, Djarot B. Darmadi, and L. Yuliati, “SIMULASI PERUBAHAN BEBAN PEMBANGKIT LISTRIK TENAGA UAP: STUDI KASUS DI GORONTALO UTARA,” Rekayasa Mesin, vol. 13, no. 3, pp. 331–342, 2022.

P. Purnami, “PENAMBAHAN KATALIS BIO KARBON AKTIF UNTUK PENINGKATAN PRODUKSI HDROGEN PADA ELEKTROLISIS AIR,” Rekayasa Mesin, vol. 13, no. 28, pp. 283–290, 2022.

B. Crisanto Putra, I. N. G. Wardana, and E. Siswanto, “Produksi Hidrogen dari Campuran Air dan Minyak Kelapa Murni (VCO) melalui Porous Media Tembaga menggunakan Prinsip Hydrogen Reformer,” J. Rekayasa Mesin, vol. 7, no. 2, pp. 87–93, Oct. 2016, doi: 10.21776/ub.jrm.2016.007.02.6.

M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, “A comprehensive review on PEM water electrolysis,” International Journal of Hydrogen Energy, vol. 38, no. 12. pp. 4901–4934, 2013, doi: 10.1016/j.ijhydene.2013.01.151.

Purnami, N. Hamidi, M. N. Sasongko, D. Widhiyanuriyawan, and I. N. G. Wardana, “Strengthening external magnetic fields with activated carbon graphene for increasing hydrogen production in water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 38, pp. 19370–19380, 2020, doi: 10.1016/j.ijhydene.2020.05.148.

Z. D. Wei et al., “Water electrolysis on carbon electrodes enhanced by surfactant,” Electrochim. Acta, 2007, doi: 10.1016/j.electacta.2006.10.011.

A. Singh, K. R. Chaturvedi, and T. Sharma, “Natural surfactant for sustainable carbon utilization in cleaner production of fossil fuels: Extraction, characterization and application studies,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106231, 2021, doi: 10.1016/j.jece.2021.106231.

Y. Fujimura and M. Iino, “The surface tension of water under high magnetic fields,” J. Appl. Phys., vol. 103, no. 12, 2008, doi: 10.1063/1.2940128.

Purnami, I. Wardana, Sudjito, D. Widhiyanuriyawan, and N. Hamidi, “Adding the activated carbon of rice husk to increase hydrogen production on water electrolysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, 2021, doi: 10.1088/1757-899x/1034/1/012075.

J. Eastoe and J. S. Dalton, “Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface,” Adv. Colloid Interface Sci., vol. 85, no. 2, pp. 103–144, 2000, doi: 10.1016/S0001-8686(99)00017-2.

N. Bidin et al., “The effect of magnetic and optic field in water electrolysis,” Int. J. Hydrogen Energy, vol. 42, no. 26, pp. 16325–16332, 2017, doi: 10.1016/j.ijhydene.2017.05.169.

C. Article, “Physical Chemistry Chemical Physics,” Phys. Chem. Chem. Phys., 2008, doi: 10.1039/).

Downloads

Published

2024-05-15

Issue

Section

Articles