STUDI NUMERIK TURBIN ANGIN SAVONIUS: TORSI MEKANIK, DIAMETER POROS, DAN DAYA
DOI:
https://doi.org/10.21776/jrm.v14i2.1378Keywords:
Wind Turbine, Savonius, Numerical Study, Torque, Shaft Diameter, PowerAbstract
One of the renewable energy sources that can be used to generate electricity is wind energy. This research aims to numerically study the Savonius Vertical Axis Wind Turbine (VAWT) type to obtain the mechanical torque, load torque, shaft diameter, and the empirical equation showing the relationship between the mechanical torque and power generated. The numerical study employs MATLAB R2018a software with the parameters mechanical torque, load torque, and power. The obtained mechanical torque is also used to determine the design of the shaft diameter based on its maximum mechanical torque. From this numerical study, the value of mechanical torque is greater than the mechanical load, and it also obtains the empirical equation of the relationship between mechanical torque and power. Validation is carried out on the empirical equation with valid results as it has the ± 10% tolerance. Furthermore, it is obtained that the design of the minimum shaft diameter of the wind turbine with PLA (Polylactic Acid) filament material is 2 mm. This Savonius turbine design can be used for placement on vehicles and in areas in Indonesia with low to high wind speeds with variations between 1 m/s – 17 m/s.
References
M. Bashir and A. Bashir, “Principle Parameters and Environmental Impacts that Affect the Performance of Wind Turbine : An Overview,” Arabian Journal for Science and Engineering, vol. 47, pp. 7891–7909, 2021, doi: https://doi.org/10.1007/s13369-021-06357-1.
“Global Wind Statistics 2015,” Global Wind Energy Council, 2015. www.gwec.net.
I. Rizianiza and D. Herfandi, “Studi Eksperimental Pengaruh Jumlah Sudu terhadap Daya pada Turbin Angin Sumbu Vertikal Tipe Rotor Crossflow untuk Optimalisasi Angin di Wilayah Pantai Kota Balikpapan,” Jurnal Rekayasa Mesin, vol. 11, no. 2, pp. 179–186, 2020, doi: 10.21776/ub.jrm.2020.011.02.5.
Safii, “Wilayah Ini Miliki Potensi Energi Angin Di Atas 100 MW,” Kementrian Energi dan Sumber Daya Mineral Republik Indonesia, 2018. https://www.esdm.go.id/id/media-center/arsip-berita/wilayah-ini-miliki-potensi-energi-angin-di-atas-100-mw#:~:text=Berdasarkan analisis potensi energi angin,serta Lombok (100 MW). (accessed Apr. 24, 2023).
“Potensi Energi Angin Indonesia 2020,” Balai Besar Survei dan Pengujian Ketenagalistrikan, Energi Baru, Terbarukan, dan Konvervasi Energi, 2021. https://p3tkebt.esdm.go.id/pilot-plan-project/energi_angin/potensi-energi-angin-indonesia-2020 (accessed Apr. 24, 2023).
BMKG, “Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG, 2011-2015,” Badan Pusat Statistik, 2017. https://www.bps.go.id/statictable/2017/02/08/1960/kecepatan-angin-dan-kelembaban-di-stasiun-pengamatan-bmkg-2011-2015.html (accessed Apr. 24, 2023).
J. Liu, H. Lin, and J. Zhang, “Review on the technical perspectives and commercial viability of vertical axis wind turbines,” Ocean Engineering, vol. 182, pp. 608–626, 2019, doi: https://doi.org/10.1016/j.oceaneng.2019.04.086.
F. Arbiyani and F. P. Lasut, “Design of Savonius Vertical Axis Wind Turbine for Vehicle,” Journal of Mechanical Engineering Science and Technology, vol. 4, no. 2, pp. 125–134, 2020, doi: 10.17977/um016v4i22020p125.
M. Hadi Ali, “Experimental Comparison Study for Savonius Wind Turbine of Two & Three Blades At Low Wind Speed,” International Journal of Modern Engineering Research, vol. 3, no. 5, 2013.
H. A. Hassan Saeed, A. M. Nagib Elmekawy, and S. Z. Kassab, “Numerical study of improving Savonius turbine power coefficient by various blade shapes,” Alexandria Engineering Journal, vol. 58, no. 2, pp. 429–441, 2019, doi: 10.1016/j.aej.2019.03.005.
D. N. Ully, B. Wuwur, and P. Ginting, “Pengaruh Pemasangan Sudu Pengarah dan Variasi Jumlah Sudu Rotor terhadap Performance Turbin Angin Savonius,” Jurnal Rekayasa Mesin, vol. 8, no. 2, pp. 127–134, 2017, doi: https://doi.org/10.21776/jrm.v5i2.229.
B. Zhang, B. Song, Z. Mao, W. Tian, B. Li, and B. Li, “A novel parametric modeling method and optimal design for Savonius wind turbines,” Energies, vol. 10, no. 3, 2017, doi: 10.3390/en10030301.
Y. Kumar Y, “A Savonius Wind Turbine with Electric Generator: Model and Test,” Clemson University, 2016.
I. Satrio Utomo, D. D. D. P. Tjahjana, and S. Hadi, “Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance,” vol. 030041, no. February, 2018, doi: https://doi.org/10.1063/1.5024100.
M. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,” Energy Procedia, vol. 141, pp. 383–388, 2017, doi: 10.1016/j.egypro.2017.11.047.
Y. R. Brillian, D. Tresna, and Rusdianasari, “Comparison of Blade Dimension Design of a Vertical Wind Turbine Applied in Low Wind,” in he 1st Sriwijaya International Conference on Environmental Issues 2018, 2018, vol. 01, pp. 1–6, doi: https://doi.org/10.1051/e3sconf/20186801001.
K. Zengel, “The history of the Faraday paradox of the unipolar generator,” European Journal of Physics, vol. 40, 2019, doi: DOI:10.1088/1361-6404/ab2345.
G. L. Johnson, Wind Energy Systems : Electronic Edition. Manhattan: Kansas State University, 2006.
T. Komass and A. Sniders, “Design and verification of vertical axis wind turbine simulation model,” Engineering for Rural Development, vol. 13, pp. 335–340, 2014.
“MakerBot PLA,” MakerBot, 2022. https://www.makerbot.com/3d-printers/materials/method-pla/.
PTI EUROPA A/S, “KFL 000 - 2-Bolt Flanged Housing Series,” PTI, 2020. https://pti.eu/.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Filian Arbiyani, Fernando Pranata Lasut, Fransiskus Albert
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.