PENGARUH PENAMBAHAN ADJUSTER PADA KOMPOR BRIKET TERHADAP JARAK PEMBAKARAN DAN LAJU PERPINDAHAN PANAS KONDUKSI

Authors

  • Jusuf Haurissa Universitas Sains dan Teknologi Jayapura
  • Helen Riupassa Universitas Sains dan Teknologi Jayapura
  • Hendry Nanlohy Universitas Sains dan Teknologi Jayapura
  • Suyatno Suyatno Universitas Sains dan Teknologi Jayapura

DOI:

https://doi.org/10.21776/jrm.v15i1.1373

Keywords:

Briquette, Adjuster, Convection, Conduction, Flame Range Stability

Abstract

The effective and efficient use of biomass briquettes is strongly influenced by the type of stove used and the way it is used. This study aims to design a briquette stove by adding an adjuster: the test fuel used honeycomb briquettes and forest fern charcoal. The heat transfer from burning honeycomb briquettes to a pot of water needs to be maintained so that the heat (temperature) remains constant during the combustion process. In the current use of briquettes, the distance between the briquette flame and the pot of water is unstable because the space is getting further away from the pool of cooking water. The combustion distance is getting farther because the bottom of the initial honeycomb briquettes burns out, causing the surface of the briquettes to decrease and move away from the surface of the water pot. Thus the heat given to the pool of water will reduce. The briquette stove needs to be added with an adjuster to overcome this problem. This adjuster serves to raise the honeycomb briquettes if the surface of the briquettes decreases. With the addition of an adjuster, it will be analyzed how much the heat transfer rate and the stability of the burning distance of the honeycomb briquettes will be. In this study, 2 test models will be used: a stove with an adjuster and a stove without an adjuster, using 14 holes in honeycomb briquettes made from forest ferns using starch (tapioca) adhesive. The distance between the surface of the briquettes and the pot of boiled water is 5 cm. The results showed that the briquette stove using an adjuster could maintain the stability of the combustion distance between the surface of the briquette and the pot of water being cooked with an average temperature t = 567.83 0C and conduction heat transfer q = 5285.699 Watt.

References

J. Haurissa et al., “Analisa energi panas pada lubang briket sarang tawon berbahan dasar ampas sagu sebagai pengganti bahan bakar minyak tanah,” Dinamis, vol. 1, no. 12, pp. 84–90, 2018, [Online]. Available: http://ojs.ustj.ac.id/dinamis/article/view/71

H. R. Haurissa, Jusuf, “Analisa Konveksi Paksa (Pemaksaan Udara Masuk) Pada Proses Pembakaran Briket Ampas Sagu,” vol. 3, no. December 2019, pp. 339–345, 2020, [Online]. Available: https://rekayasamesin.ub.ac.id/index.php/rm/article/view/654

M. Njenga et al., “Implications of charcoal briquette produced by local communities on livelihoods and environment in Nairobi-Kenya,” Int. J. Renew. Energy Dev., vol. 2, no. 1, pp. 19–29, 2013, doi: 10.14710/ijred.2.1.19-29.

R. Wibowo, “Analisis Thermal Nilai Kalor Briket Ampas Batang Tebu dan Serbuk Gergaji,” J. Rekayasa Mesin, vol. 10, no. 1, pp. 9–15, 2019, doi: 10.21776/ub.jrm.2019.010.01.2.

A. Mustain, C. Sindhuwati, A. A. Wibowo, A. S. Estelita, and N. L. Rohmah, “Pembuatan Briket Campuran Arang Ampas Tebu dan Tempurung Kelapa sebagai Bahan Bakar Alternatif,” J. Tek. Kim. dan Lingkung., vol. 5, no. 2, p. 100, 2021, doi: 10.33795/jtkl.v5i2.183.

W. R. Wicaksono and S. Nurhatika, “Variasi Komposisi Bahan pada Pembuatan Briket Cangkang Kelapa Sawit (Elaeis guineensis) dan Limbah Biji Kelor (Moringa oleifera),” J. Sains dan Seni ITS, vol. 7, no. 2, pp. 66–70, 2019, doi: 10.12962/j23373520.v7i2.37231.

Sarjono and A. Hendriyanto, “Terhadap Karakteristik Pembakaran Briket,” J. Rekayasa Proses, vol. 8, no. 1, pp. 29–36, 2017.

J. Jacobis and M. N. Sasongko, “Pengaruh prosentase campuran briket limbah serbuk kayu gergajian dan limbah daun kayu putih,” J. Rekayasa Mesin, vol. 4, no. 3, pp. 194–198, 2013, [Online]. Available: https://rekayasamesin.ub.ac.id/index.php/rm/article/view/217

O. J. Oyejide, M. O. Okwu, and L. K. Tartibu, “Adaptive design and development of a modular water hyacinth briquette stove,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–19, 2019, doi: 10.1080/15567036.2019.1675808.

S. Pandey and C. Regmi, “Analysis and Test of Biomass Briquette and Stoves,” Nepal J. Sci. Technol., vol. 14, no. 1, 2013, doi: 10.3126/njst.v14i1.8931.

Z. Djafar, S. Suluh, N. Amaliyah, and W. H. Piarah, “Comparison of the Performance of Biomass Briquette Stoves on Three Types of Stove Wall Materials,” Int. J. Des. Nat. Ecodynamics, vol. 17, no. 1, pp. 145–149, 2022, doi: 10.18280/ijdne.170119.

M. Faisal and Mahyuddin, “Kaji Eksperimental Kehilangan Panas Pada Dinding Kompor Biobriket Tak Terisolasi,” J. Ristech (Jurnal riset, Sains dan Teknol., vol. 1, no. 1, pp. 8–20, 2019, [Online]. Available: http://jurnal.abulyatama.ac.id/index.php/ristech/article/view/347/311

T. E. Omoniyi and O. Ojo, “Development And Performance Evaluation Of A Briquette Cooking,” 43rd Annu. Conf. For. Assoc. Niger. Des., no. March, 2022.

S. S. Harsono, B. Prayogo, Tasliman, M. Mel, and F. Ridha, “Effect of holes system designing for low energy stove using coffee husk bio-pellet as solid fuel,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 51, no. 2, pp. 215–226, 2018.

J. J. Jetter and P. Kariher, “Solid-fuel household cook stoves: Characterization of performance and emissions,” Biomass and Bioenergy, vol. 33, no. 2, pp. 294–305, 2009, doi: 10.1016/j.biombioe.2008.05.014.

N. Maccarty, D. Still, and D. Ogle, “Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance,” Energy Sustain. Dev., vol. 14, no. 3, pp. 161–171, 2010, doi: 10.1016/j.esd.2010.06.002.

R. Gupta and N. D. Mittal, “Fluid flow and heat transfer in a single-pan wood stove,” Int. J. Eng. Sci. Technol., vol. 2, no. 9, pp. 4312–4324, 2010.

L. Deng, D. Torres-Rojas, M. Burford, T. H. Whitlow, J. Lehmann, and E. M. Fisher, “Fuel sensitivity of biomass cookstove performance,” Appl. Energy, vol. 215, no. February, pp. 13–20, 2018, doi: 10.1016/j.apenergy.2018.01.091.

A. A. Bantu, G. Nuwagaba, S. Kizza, and Y. K. Turinayo, “Design of an Improved Cooking Stove Using High Density Heated Rocks and Heat Retaining Techniques,” J. Renew. Energy, vol. 2018, pp. 1–9, 2018, doi: 10.1155/2018/9620103.

G. Boafo-Mensah, K. M. Darkwa, and G. Laryea, “Effect of combustion chamber material on the performance of an improved biomass cookstove,” Case Stud. Therm. Eng., vol. 21, p. 100688, 2020, doi: 10.1016/j.csite.2020.100688.

J. Haurissa, H. Riupassa, N. J. M. Nanulaitta, Trismawati, and H. Y. Nanlohy, “Development of Briquette Stove to Increase Heating Efficiency and Flame Stability of Sago Waste Briquette,” AIP Conf. Proc., vol. 2440, no. January, 2022, doi: 10.1063/5.0075008.

Downloads

Published

2024-05-15

Issue

Section

Articles