EFEK LAJU PEMANASAN (HEATING RATE) TERHADAP DISTRIBUSI TEMPERATUR DAN KINERJA MODUL THERMOELECTRIC GENERATOR SP1848 SA

Authors

  • Nugroho Tri Atmoko Sekolah Tinggi Teknologi Warga
  • Haikal Haikal Sekolah Tinggi Teknologi Warga Surakarta
  • Bagus Radiant Utomo Universitas Muhammadiyah Surabaya
  • Fatimah Nur Hidayah Sekolah Tinggi Teknologi Warga Surakarta
  • Emanuel Budi Raharjo Sekolah Tinggi Teknologi Warga Surakarta

DOI:

https://doi.org/10.21776/jrm.v14i2.1327

Keywords:

Plat Heater, Thermoelectric Generator, Heating Rate, Temperature Distribution Profile, Output Voltage

Abstract

Thermoelectric Generator (TEG) is an energy conversion technology that converts heat energy into electrical. There are several factors that affect the performance of TEG, one of which is the heat source. This research will investigate the use of waste heat by varying the heating rate on the performance of TEG in generating electricity and the temperature distribution profile through experimental studies on a laboratory scale. The heating plate is used to heat the hot surface of the TEG. There are three variations of the heating rate used, namely: Low (0.355°C/min), Middle (0.933 °C/min) and High (1.558 °C/min). Temperature measurements were carried out on the hot surface (Th), the cold surface (Tc) of the TEG module, and the ambient temperature (Ta) using Arduino temperature data logger. Meanwhile, to measure the electrical output in the form of voltage (V) generated by the TEG module, using the Arduino voltage data logger. The results show when the heating rate used is high (high heating rate) then the average electrical output of the TEG module produces a voltage of 5.34V. The heating rate on the hot surface of the TEG module will affect the difference in surface temperature and the performance of the TEG module in generating electricity.  

References

N. Harun and V. R. Yandri, “Sistem Kendali Distribusi Gas Buang pada Waste Heat Recovery Power Generation untuk dikonversi menjadi Energi Terbarukan di Indarung V, PT. Semen Padang, Indonesia,” Elektron J. Ilm., vol. 12, no. 1, pp. 24–27, 2020, doi: 10.30630/eji.12.1.152.

F. Hao et al., “High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °c,” Energy Environ. Sci., vol. 9, no. 10, pp. 3120–3127, 2016, doi: 10.1039/c6ee02017h.

X. Hu et al., “Investigation on waste heat recovery of a nearly kilowatt class thermoelectric generation system mainly based on radiation heat transfer,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–10, 2020, doi: 10.1080/15567036.2020.1829190.

Z. Murčinková, M. Kosturák, and J. Ferenc, “Testing of proposed design of stove-powered thermoelectric generator using natural and forced air cooling,” Adv. Mech. Eng., vol. 13, no. 1, pp. 1–10, 2021, doi: 10.1177/1687814020987761.

M. Munawir, M. N. Sasongo, and N. Hamidi, “Kinerja Thermoelectric Pada Kotak Pendingin Berdasarkan Rangkaian Thermoelectric Dan Putaran Fan Wind Tunnel,” Rekayasa Mesin, no. December 2020, pp. 27–40, 2021.

H. B. Gao, G. H. Huang, H. J. Li, Z. G. Qu, and Y. J. Zhang, Development of stove-powered thermoelectric generators: A review, vol. 96. 2016.

D. Champier, “Thermoelectric generators: A review of applications,” Energy Convers. Manag., vol. 140, pp. 167–181, 2017, doi: 10.1016/j.enconman.2017.02.070.

D. Champier, J. P. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, “Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove,” Energy, vol. 36, no. 3, pp. 1518–1526, 2011, doi: 10.1016/j.energy.2011.01.012.

F. J. Disalvo, “Thermoelectric Cooling and Power Generation,” vol. 285, no. JULY, pp. 703–707, 1999.

G. J. Snyder, M. Soto, R. Alley, D. Koester, and B. Conner, “Hot Spot Cooling using Embedded Thermoelectric Coolers.”

N. T. Atmoko, I. Veza, T. Widodo, and B. Riyadi, “Study On The Energy Conversion In The Thermoelectric Liquefied Petroleum Gas Cooking Stove With Different Cooling Methods,” vol. 69, no. 1, pp. 185–193, 2021, doi: 10.14445/22315381/IJETT-V69I1P228.

M. Borcuch, M. Musiał, S. Gumuła, K. Sztekler, and K. Wojciechowski, “Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system,” Appl. Therm. Eng., vol. 127, pp. 1355–1363, 2017, doi: 10.1016/j.applthermaleng.2017.08.147.

X. Liu, Y. D. Deng, K. Zhang, M. Xu, Y. Xu, and C. Q. Su, “Experiments and simulations on heat exchangers in thermoelectric generator for automotive application,” Appl. Therm. Eng., vol. 71, no. 1, pp. 364–370, 2014, doi: 10.1016/j.applthermaleng.2014.07.022.

T. Widodo, B. Riyadi, B. Radiant, M. Effendy, A. Tri, and H. H. Al-kayiem, “Effect of thermal cycling with various heating rates on the performance of thermoelectric modules,” Int. J. Therm. Sci., vol. 178, no. March, p. 107601, 2022, doi: 10.1016/j.ijthermalsci.2022.107601.

P. Thanthong, P. Chantawong, and J. Khedari, “Radiation-Based Thermoelectric Power Generation with Finned Heat Absorber,” vol. 12, no. 1, 2022.

S. Wiriyasart and P. Naphon, “Thermal to electrical closed-loop thermoelectric generator with compact heat sink modules,” Int. J. Heat Mass Transf., vol. 164, p. 120562, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120562.

Downloads

Published

2023-08-15

Issue

Section

Articles