PEMILIHAN JENIS AIRFOIL MOHINDER UNNES MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS

Authors

  • Dony Al-Janan Universitas Negeri Semarang
  • Yoga Gusda Universitas Negeri Semarang

DOI:

https://doi.org/10.21776/jrm.v15i1.1280

Keywords:

UAV, AHP, Airfoil, Criteria, Aerodynamics

Abstract

An UAV (Unmanned Aerial Vehicle) is an aircraft without an onboard pilot that has several functions. Mohinder is one of the fixed-wing UAVs used for mapping and monitoring areas. Currently, the Mohinder UNNES is adopted from other UAVs by reduced-scale X-UAV Talon. There are differences between dimensions and cruising speed among Mohinder and X-UAV Talon (Mohinder adaptation). The purpose of this study is to select the suitable Mohinder’s airfoil using XFLR 5 simulation using multi-criteria decision particularly the AHP (Analytical Hierarchy Process). AHP can break down the choosing into a hierarchy, compare each factor's importance, and use math to figure out the best choice based on the preferences. The selection criteria are Max Camber, Thickness α stall, Max L/Dmax, CLmax, and CL0, so then the basic airfoil shapes are AH 79-100 B, S1223 RTL, FX 63-120, dan EPPLER 395. Mohinder airfoil will be selected based on aerodynamic performance at Reynold number 200.000. The simulation results showed the AH 79-100 B airfoil has higher L/Dmax and Cl at angle of attack (AOT) -10° to 20° compared to airfoil MH-32 (Mohinder current airfoil)

References

Narayanan, R., dan Ibe, O. (2015). Joint Network for Disaster Relief and Search and Rescue Network Operations. Journal of Wireless Public Safety Network, 10(6), 163-193.

Jung, S. (2020). Special Issue on Unmanned Aerial Vehicles (UAVs). Applied Sciences, 10(22), 8078.

Austin, R. (2010). Unmanned Aircraft Systems: UAVs Design, Development and Deployment, AIAA Education Series, American Institute of Aeronauticsnd Astronautics, Reston, VA, USA, ISBN 978-1-60086-759-0.

Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., Pope, D. (2015). Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling. J. Atmos. Ocean. Technol., 32, 97–115.

Chianucci, F., Disperati, L., Guzzi, D.; Bianchini, D., Nardino, V., Lastri, C., Rindinella, A., Corona, P. (2016) Estimation of Canopy Attributes in Beech Forests Using True Colour Digital Images from a Small Fixed-Wing UAV. Int. J. Appl. Earth Obs. Geoinf., 47, 60–68.

Zhang, H., Wang, L., Tian, T., Yin, J. (2021). A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. Remote Sens, 13, 1221.

Verstynen, H. (2013). Perspectives on Unmanned Aircraft Classification for Civil Airworthiness Standards. Langley Research Center, National Aeronautics and Space Administration: Hampton, VA, USA.

Sadraey, M.H. (2013). Aircraft Design: A Systems Engineering Approach; Aerospace Series. Wiley: Chichestet, UK, ISBN 978-1-119- 95340-1.

Shams, T. A., Shah, S. I. A., Javed, A., dan Hamdani, S. H. R. (2020). Airfoil Selection Procedure, Wind Tunnel Experimentation and Implementation of 6 DOF Modeling on a Flying Wing Micro Aerial Vehicle. Journal Micromachines, 11(6), 553-584.

Ashutosh, R. K., Mohit S. D., Parikshit S. D., dan Babasaheb K. V. (2022). Selection and Analysis of An Airfoil for Fixed Wing Micro Unmanned Aerial Vehicle. International Research Journal of Engineering and Technology (IRJET), 9, 523-527.

Alsahlani, A. A., dan Rahulan, T. (2017). Aerofoil Design for Unmanned High-Altitude Aft-Swept Flying Wings. Journal of Aerospace Technology and Management, 9(30), 335–345.

Bravo-Mosquera, P.D., Botero-Bolivar, L., Acevedo-Giraldo, D. & Cerón-Muñoz, H.D. (2017). Aerodynamic design analysis of a UAV for superficial research of volcanic environments. Journal Aerospace Science and Technology, 70, 600-614.

Richey, R. C., dan Klein, J. D. (2007). Design and Development Research. Handbook of Research on Educational Communications and Technology, 141–150.

Sugiyono. (2017). Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Saaty, T.L. dan Vargas L.G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process Second Edition. International Series in Operations Research & Management Science Volume 175. New York: Springer.

Morgado, J., Vizinho, R., Silvestre, M. A. R., & Páscoa, J. C. (2016). XFOIL vs CFD Performance Predictions for High Lift Low Reynolds Number Airfoils. Journal Aerospace Science and Technology, 52, 207–214.

Hanif, I., An Nafi, A., & Jatisukamto, G. (2017). Pengaruh Sudut Tekuk (Cant) Winglet pada Airfoil NACA 2215 pada Aerodinamika Pesawat. Journal Rotor, 41-45.

Downloads

Published

2024-05-15

Issue

Section

Articles