EFFECT OF SHIELDING GAS ON THE PROPERTIES OF STAINLESS-STEEL SUS 304L PLUG WELDED
DOI:
https://doi.org/10.21776/jrm.v13i3.1251Keywords:
MIG Welding, Plug Welding, Shielding Gas, Argon Gas, CO2 Gas, Stainless SteelAbstract
The effect of shielding gas composition and welding current on the mechanical-physical properties of plug welding joint stainless steel SUS 304L has been investigated. Metal Inert Gas (MIG) welding was used to join SUS304L with a thickness of 3 mm. The variations of welding current were 80 A, 100 A, and 120 A, while variations of shielding gas composition were 100% Ar; 92,5% Ar-7,5% CO2; 85% Ar-15% CO2; 77,5% Ar-22,5% CO2; 100% CO2. Macro and microstructural tests were conducted to determine welded joints physical properties. Tensile-shear testing and micro hardness Vickers were done to determine welded joints physical properties. The results show that the higher level of welding current and CO2 content in the shielding gas, the more tensile-shear load bearing capacity and decreased hardness. The welding current of 120 A and shielding gas 77,5% Ar-22,5% CO2 produced welded joints with the highest tensile-shear load bearing capacity. The nugget size increased as the higher level of welding current and the CO2 content in the shielding gas due to the increase of heat input.
References
R. RAHARJO, N. HAMIDI, T. D. WIDODO, R. BINTARTO, and E. HABIBULFALAH, “Pengaruh clamping frame kayu meranti dan ASTM A36 pada friction spot joining Al 1100 dan PVC,” Rekayasa Mesin, vol. 11, no. 2, pp. 257–265, 2020, doi: https://doi.org/10.21776/ub.jrm.2020.011.02.12.
M. SOKOLUK, C. CAO, S. PAN, and X. LI, “Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075,” Nat. Commun., vol. 10, no. 98, pp. 1–8, 2019, doi: 10.1038/s41467-018-07989-y.
I. BITHARAS, N. A. MCPHERSON, W. MCGHIE, D. ROY, and A. J. MOORE, “Visualisation and optimisation of shielding gas coverage during gas metal arc welding,” J. Mater. Process. Technol., vol. 255, no. October 2017, pp. 451–462, 2018, doi: 10.1016/j.jmatprotec.2017.11.048.
M. NADYA, Y. S. IRAWAN, and M. A. CHOIRON, “Pengaruh double chamfer terhadap distribusi suhu dan daerah Zpl pada sambungan las gesek Al 6061 dengan simulasi komputer,” Rekayasa Mesin, vol. 11, no. 2, pp. 433–445, 2021, doi: https://doi.org/10.21776/ub.jrm.2021.012.02.20.
J. F. TU and A. G. PALEOCRASSAS, “Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fiber laser welding,” J. Mater. Process. Technol., vol. 211, pp. 95–102, 2011, doi: 10.1016/j.jmatprotec.2010.09.001.
L. PELLONE, G. INAMKE, K. HONG, and Y. C. SHIN, “Effects of interface gap and shielding gas on the quality of alloy AA6061 fiber laser lap weldings,” J. Mater. Process. Tech., vol. 268, no. October 2018, pp. 201–212, 2019, doi: 10.1016/j.jmatprotec.2019.01.025.
R. KAÇAR and K. KÖKEMLI, “Effect of controlled atmosphere on the mig-mag arc weldment properties,” Mater. Des., vol. 26, no. 6, pp. 508–516, 2005, doi: 10.1016/j.matdes.2004.07.027.
Y. XIE and J. ZHANG, “Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review,” J. Nucl. Mater., vol. 466, pp. 85–93, 2015, doi: 10.1016/j.jnucmat.2015.07.043.
M. TANAKA, S. TASHIRO, M. USHIO, T. MITA, A. B. MURPHY, and J. J. LOWKE, “CO2-shielded arc as a high-intensity heat source,” Vacuum, vol. 80, no. 11–12, pp. 1195–1198, 2006, doi: 10.1016/j.vacuum.2006.01.047.
V. A. SETYOWATI, SUHENI, F. ABDUL, and S. ARIYADI, “Effect of welding methods for different carbon content of ss304 and ss304l materials on the mechanical properties and microstructure,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1010, no. 1, 2021, doi: 10.1088/1757-899X/1010/1/012018.
R. R. AMBRIZ, G. BARRERA, R. GARCÍA, and V. H. LÓPEZ, “A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc ( IEA ) and the modified indirect electric arc ( MIEA ),” Mater. Des., vol. 30, no. 7, pp. 2446–2453, 2009, doi: 10.1016/j.matdes.2008.10.025.
P. E. SETYAWAN, Y. S. IRAWAN, and W. SUPRAPTO, “Kekuatan Tarik Dan Porositas Hasil Sambungan Las Gesek Aluminium 6061 Dengan Berbagai Suhu Aging,” Rekayasa Mesin, vol. 5, no. 2, p. pp.141-148, 2014, doi: 10.21776/ub.jrm.
V. I. VISHNYAKOV, S. A. KIRO, M. V. OPRYA, and A. A. ENNAN, “Effect of shielding gas temperature on the welding fume particle formation: Theoretical model,” J. Aerosol Sci., vol. 124, pp. 112–121, 2018, doi: 10.1016/j.jaerosci.2018.07.006.
Y. R. WONG and S. F. LING, “An investigation of dynamical metal transfer in GMAW - Effects of argon shielding gas,” J. Mater. Process. Technol., vol. 214, no. 1, pp. 106–111, 2014, doi: 10.1016/j.jmatprotec.2013.08.003.
L. L. WANG, F. G. LU, H. P. WANG, A. B. MURPHY, and X. H. TANG, “Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels,” J. Phys. D. Appl. Phys., vol. 47, no. 46, 2014, doi: 10.1088/0022-3727/47/46/465202.
Y. OGINO, Y. HIRATA, and A. B. MURPHY, “Numerical simulation of GMAW process using Ar and an Ar–CO2 gas mixture,” Weld. World, vol. 60, no. 2, pp. 345–353, 2016, doi: 10.1007/s40194-015-0287-3.
A. MURTIONO, “Pengaruh quenching dan tempering terhadap kekerasan dan kekuatan tarik serta struktur mikro baja karbon sedang untuk mata pisau pemanen sawit,” e-Dinamis, vol. II, no. 2, 2012.
C. RAJARAJAN, P. SIVARAJ, and V. BALASUBRAMANIAN, “Microstructural analysis of weld nugget properties on resistance spot-welded advance high strength dual phase (α+α /) steel joints,” Mater. Res. Express, vol. 7, no. 1, 2020, doi: 10.1088/2053-1591/ab654d.
I. GUZMÁN, E. GRANDA, B. VARGAS, C. CRUZ, Y. AVILA, and J. ACEVEDO, “Tensile and fracture behavior in 6061-T6 and 6061-T4 aluminum alloys welded by pulsed metal transfer GMAW,” Int. J. Adv. Manuf. Technol., vol. 103, no. 5–8, pp. 2553–2562, 2019, doi: 10.1007/s00170-019-03673-7.
M. SHOME, “Effect of heat-input on austenite grain size in the heat-affected zone of HSLA-100 steel,” Mater. Sci. Eng. A, vol. 445–446, pp. 454–460, 2007, doi: 10.1016/j.msea.2006.09.085.
V. V. SATYANARAYANA, G. M. REDDY, and T. MOHANDAS, “Dissimilar metal friction welding of austenitic-ferritic stainless steels,” J. Mater. Process. Technol., vol. 160, no. 2, pp. 128–137, 2005, doi: 10.1016/j.jmatprotec.2004.05.017.
S. LU, H. FUJII, and K. NOGI, “Weld shape variation and electrode oxidation behavior under Ar-(Ar-CO2) double shielded GTA welding,” J. Mater. Sci. Technol., vol. 26, no. 2, pp. 170–176, 2010, doi: 10.1016/S1005-0302(10)60028-X.
J. S. ZUBACK and T. DEBROY, “The hardness of additively manufactured alloys,” Materials (Basel)., vol. 11, no. 11, 2018, doi: 10.3390/ma11112070.
M. ALIZADEH-SH, S. P. H. MARASHI, and M. POURANVARI, “Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties,” Mater. Des., vol. 56, pp. 258–263, 2014, doi: 10.1016/j.matdes.2013.11.022.
P. KAH and J. MARTIKAINEN, “Influence of shielding gases in the welding of metals,” Int. J. Adv. Manuf. Technol., vol. 64, no. 9–12, pp. 1411–1421, 2013, doi: 10.1007/s00170-012-4111-6.
D. KATHERASAN, P. SATHIYA, and A. RAJA, “Shielding gas effects on flux cored arc welding of AISI 316L (N) austenitic stainless steel joints,” Mater. Des., vol. 45, pp. 43–51, 2013, doi: 10.1016/j.matdes.2012.09.012.
G. CAMPANA, A. ASCARI, A. FORTUNATO, and G. TANI, “Hybrid laser-MIG welding of aluminum alloys: The influence of shielding gases,” Appl. Surf. Sci., vol. 255, no. 10, pp. 5588–5590, 2009, doi: 10.1016/j.apsusc.2008.07.169.
L. ZHAO, T. SUGINO, G. ARAKANE, and S. TSUKAMOTO, “Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding,” Sci. Technol. Weld. Join., vol. 14, no. 5, pp. 457–467, 2009, doi: 10.1179/136217109X434252.
L. ZHAO, S. TSUKAMOTO, G. ARAKANE, T. SUGINO, and T. DEBROY, “Influence of oxygen on weld geometry in fibre laser and fibre laser-GMA hybrid welding,” Sci. Technol. Weld. Join., vol. 16, no. 2, pp. 166–173, 2011, doi: 10.1179/1362171810Y.0000000010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ilham Habibi, Januar Tri Prasetyo, Nurul Muhayat, Triyono Triyono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.