PENGARUH PENAMBAHAN HIDROKSIAPATIT DAN KITOSAN PADA PLA DAN ABS TERHADAP SIFAT MEKANIK DARI KOMPOSIT BIOMATERIAL

Authors

  • I Wayan Gede Suputra Wardiana Universitas Brawijaya
  • Putu Hadi Setyarini Universitas Brawijaya
  • Teguh Dwi Widodo Universitas Brawijaya

DOI:

https://doi.org/10.21776/jrm.v13i3.1224

Keywords:

PLA, ABS, HAp, Chitosan, Injection Molding, Mechanical Properties

Abstract

The purpose of this study is determine the mechanical properties of PLA-Hap-Chitosan and ABS-HAp-Chitosan composites. Poly lactic acid (PLA) and acrylonitrile butdie styrene (ABS) are polymers that can be applied in the biomedical field because they the to decompose naturally in the human body. To streng and not make the body wear out, a ceramic element that has bioactive, biodegradable and biocompatible properties is added, namely hydrochiapatite (HAp). In addition to hydroxyapatite, chitosan is also added as a natural element that has as an anti-bacterial. The materials used are PLA and ABS with variations using HAp powder and chitosan. The process of making this composite uses an injection molding process with a temperature of 190oC on PLA and 250oC on ABS. The results showed that the addition of HAp and chitosan powder to PLA and ABS caused a decrease in the mechanical properties of the composite, this was due to the difference in polarity which led to the formation of agglomeration in the composite and resulted in poor interactions, causing the mechanical properties of the composite to decrease. The maximum mechanical properties are aimed at the composition of PLA-Hap-Chitosan 90-0-10 and the minimum is PLA-Hap-Chitosan 90-2-8. Meanwhile, for the ABS-HAp-Chitosan composite, the maximum mechanical properties were aimed at the ABS-HAp-Chitosan 90-8-2 composition and the minimum for the ABS-Hap-Chitosan 90-0-10 composition.

References

SINGH, R., & RANJAN, N. “Experimental investigations for preparation of biocompatible feedstock filament of fused deposition modeling (FDM) using twin screw extrusion process”. Journal of Thermoplastic Composite Materials, 1-15.(2017).

RANJAN, N., SINGH, R., & AHUJA, I. “Investigations for mechanical properties of PLA-HAp-CS based functional prototypes”. Elsevier, 2329–2334.(2019).

RANJAN, N., SINGH, R., & AHUJA, I. “Material Processing of PLA-HAp-CS-Based Thermoplastic Composite Through Fused Deposition Modeling for Biomedical Applications”. Springer Nature Switzerland AG. (2019).

RAHMAYETTY, KANANI, N., & YUDO W, E. “Pengaruh penambahan pla pada pati terplastisasi gliserol terhadap sifat mekanik blend film”. urnal.umj, 2407 – 1846. (2018).

SINGH, R., FRATERNAL, F., BONAZZI, G., HASHM, S. M., KUMAR, R., & RANJAN, N. “Investigations for Development of Feed Stock Filament of Fused Deposition Modeling From Recycled Polyamide”. Elsevier, 1-20. (2018).

RANJAN, N., SINGH, R., AHUJA, I., KUMAR, R., SINGH, J., VERMA, K. A., ET AL. “On 3D Printed Scafolds For Orthopedic Tissue Engineering Applications”. SN Applied Sciences, 2-192. (2020).

RASYIDA, A., WICAKSONO, S., PRADITA, N., ARDHYANANTA, H., & PURNOMO, A. “Effect Of Chitosan Addition To Characteristic And Antimicrobial Activity Of Zinc Doped Hydroxyapatite”. Innovation in Polymer Science and Technology, 1-8. (2017).

LIN, L., FANG, Y., LIAO, Y., CHEN, G., GAO, C., & ZHU, P. “3D Printing and Digital Processing Techniques in Dentistry: A Review of Literature”. Advenced Science News, 1-28. (2019).

ZIABKA, M., DZIADEK , M., & MENASZEK, E. “Biocompatibility of Poly(acrylonitrile-butadiene-styrene) Nanocomposites Modified with Silver Nanoparticles”. MDPI, 1257. (2018).

HELGUERO, G. C., AMAYA, L. J., KOMATSU, D., PENTYALA, S., MUSTAHSAN, V., RAMIREZ, A. E., ET AL. “Trabecular Scaffolds´ Mechanical Properties Of Bone Reconstruction Using Biomimetic Implants”. Elsevier, 121 – 126. (2017).

HELGUERO, C., MUSTAHSAN, V., PARMAR, S., PENTYALA, S., PFAIL, J., KAO, I., ET “Albiomechanical Properties Of 3D-Printed Bone Scaffolds Are Improved By Treatment With CRFP”. Journal of Orthopaedic Surgery and Researc, 2-9. . (2017).

ZHOU, X., ZHANG, Y., MAO, T., & ZHOU, H. “Monitoring And Dynamic Control Of Quality S tability For Injection Molding Process”. Elsevier, 358-366. (2017).

RANJAN, N., SINGH, R., AHUJA, I., & SINGH, J. “Fabrication of PLA-HAp-CS Based Biocompatible and Biodegradable Feedstock Filament Using Twin Screw Extrusion”. Springer International Publishing AG, 325-343. . (2019).

PAWARANGKOOL, K., & KEAWWATTANA, W. “Study the Effect of the Addition of HAp from Crocodile Bones on the Mechanical Properties of PLA/HAp Composites”. Research in Materials and Manufacturing Technologies, 834-836. (2014).

HONG, Z., ZHANG, P., HE, C., QIU, X., LIU, A., CHEN, L., ET AL. “Nano-Composite Of Poly(L-Lactide) And Surface Grafted Hydroxyapatite: Mechanical Properties And Biocompatibility”. Elsevier, 6296–6304. . (2005).

THANH, T. D., TRANG, T. P., THOM, T. N., PHUONG, T. N., NAM, T. P., TRANG, T. N., ET AL. “Effects of Porogen on Structure and Properties of Poly Lactic Acid/Hydroxyapatite Nanocomposites (PLA/HAp)”. American Scientific Publishers, 9450-9459. (2016).

OKTAVIAN, D., MAHARDIKA, M., & ARIFVIANTO , B. EKSTRUKSI DAN KARAKTERISASI FILAMEN KOMPOSIT POLYLACTID ACID (PLA) / CARBON NANO TUBE (CNT) . Jurnal Material Teknologi Proses, 2477 - 2135. (2021).

GIGANTE, V., BOSI, L., PARLANTI, P., GEMMI, M., ALIOTTA, L., & LAZZERI, A. Analysis of the Damage Mechanism around the Crack Tip for Two Rubber-Toughened PLA-Based Blends. MDPI, 1-17. (2021).

PAWARANGKOOL, K., & KEAWWATTANA, W. Study the Effect of the Addition of HAp from Crocodile Bones on the Mechanical Properties of PLA/HAp Composites. Advanced Materials Research, 237-240. (2014).

RANJAN, N., SINGH, R., & AHUJA, I. “Development of PLA-HAp-CS-based biocompatible functional prototype:A case study”. SAGE, 1-19. (2018).

LAY, M., THAJUDIN, N. N., HAMID, A. Z., RUSLI, A., ABDULLAH, K. M., & SHAUIB, K. R. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding . Elsevier, 1359-8368. (2019).

MENG NG, H., BEE, S.-T., SIN, T. L., RATNAM, C., & RAHMAT,. “AInteraction Effect of Scomberomorus Guttatus-Derived Hydroxyapatite and Montmorillonite on the Characteristics of Polylactic Acid Blends for Biomedical Application”. Springer, 27:215. (2020).

PAŞCU, E., STOKES, J., & MCGUINNESS, G. “Electrospun Composites Of PHBV, Silk Fibroin And Nano-Hydroxyapatite For Bone Tissue Engineering”. Elsevier, 4905–4916. (2013).

ERRYANI, A., YULIANT, THAHA, N. Y., LESTARIA, P. F., SYAHID, N. A., & HAKIM, N. R. Sintesis Material Implan Biokomposit Pla-Abs-Mg : “Sifat Mekanik, Mikrostruktur, Dan Perilaku Elektrokimia”. LIPI, 89-98. (2020).

MONDAL, S., NGUYEN, P. T., PHAM, H. V., HOANG, G., MANIVASAGAN, P., KIM, H. M., et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Elsevier, 0272-8842. (2019).

THANH, T. D., TRANG, T. P., HUONG, T. H., NAM, T. P., PHUONG, T. N., TRANG , T. N., et al. Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration . ResearchGate, 391-404. (2020).

Downloads

Published

2022-12-31

Issue

Section

Articles