MENINGKATKAN EFEKTIVITAS KONDENSOR VERTIKAL PIPA HELIKAL KOIL UNTUK DESTILASI MINYAK ATSIRI SEREH

Authors

  • Nicolas Titahelu Pattimura University
  • Danny Samuel Pelupessy Pattimura University
  • Cendy Sophia Edwina Tupamahu Pattimura University
  • Ammar F Rumagutawan Pattimura University

DOI:

https://doi.org/10.21776/jrm.v14i1.1219

Keywords:

Volumetric Flow Rate, Helical Coil Pipe, Effectiveness, Condenser, Citronella Essential Oil

Abstract

The main focus of this research is to modify the straight pipe of the Citronella essential oil distillation condenser using a helical coil pipe to shorten the distillation time. This study aims to obtain an effective shell-side fluid volumetric rate to shorten the distillation time. The volumetric rate of the shell side fluid varies from 0.72 to 3.66 LPM at a constant pitch ratio of 2.10. Recording of data in the form of temperature, volumetric rate of shell side water, and tube side steam after steady state is reached. The experimental results show that the effectiveness increases with the increase in the volumetric flow rate of the shell side fluid, where the maximum effectiveness at the volumetric flow rate of 3.66 LPM is 69.99%, while the minimum effectiveness at the volumetric flow rate of 0.72 LPM is 44.39%. The results of the validation of the effectiveness of the condenser show a trend curve that is identical to the previous research, with an average deviation of 5.67%. The maximum volumetric flow rate with a minimum distillation time of 120 minutes with a condensate volume of 8 ml or 240 minutes is smaller than the result of straight-pipe condenser distillation by UKM. The maximum effectiveness is due to an increase in the Reynolds number on the shell side, which results in an increase in the actual heat transfer. It can be concluded that the maximum condenser effectiveness at a maximum volumetric rate of 3.66 LPM could be used for refining Citronella essential oil by SMEs.

Author Biography

Nicolas Titahelu, Pattimura University

Departemen Teknik Mesin, Pembina

References

M. MUKARRAM et al., “Lemongrass essential oil components with antimicrobial and anticancer activities,” Antioxidants, vol. 11, no. 1, pp. 1–23, 2022, doi: 10.3390/antiox11010020.

D. T. TRANG et al., “Essential Oils of Lemongrass (Cymbopogon citratus Stapf) Induces Apoptosis and Cell Cycle Arrest in A549 Lung Cancer Cells,” Biomed Res. Int., vol. 2020, 2020, doi: 10.1155/2020/5924856.

N. P. THUONG NHAN et al., “Microencapsulation of lemongrass (cymbopogon citratus) essential oil via spray drying: Effects of feed emulsion parameters,” Processes, vol. 8, no. 1, 2020, doi: 10.3390/pr8010040.

M. AĆIMOVIĆ et al., “Cymbopogon citratus (DC.) STAPH: CHEMICAL COMPOSITION, ANTIMICROBIAL AND ANTIOXIDANT ACTIVITIES, USE IN MEDICINAL AND COSMETIC PURPOSE,” pp. 344–360, 2019.

SLAMET, SUPRANTO, and RIYANTO, “Studi Perbandingan Perlakuan Bahan Baku dan Metode Distilasi Terhadap Rendeman dan Kualitas Minyak Atsiri Sereh Dapur (Cymbopogon citratus),” ASEAN J. Syst. Eng., vol. 1, no. 1, pp. 25–31, 2013, [Online]. Available: http://journal.ugm.ac.id/index.php/ajse.

C. PEICHEL, D. V. T. NAIR, G. DEWI, A. M. DONOGHUE, K. M. REED, and A. KOLLANOOR JOHNY, “Effect of Lemongrass (Cymbopogon citratus) Essential Oil on the Survival of Multidrug-Resistant Salmonella enterica serovar Heidelberg in Contaminated Poultry Drinking Water,” J. Appl. Poult. Res., vol. 28, no. 4, pp. 1121–1130, 2019, doi: 10.3382/japr/pfz076.

G. C. P. ROMUGA and R. C. M. LIZARDO, “EFficacy of Lemon Grass (Cymbopogon Citratus Stapf.) Essential Oil as a Natural Preservative In Ready-To-Drink Moringa (Moringa Oleifera Lam.) Beverage,” J. Microbiol. Biotechnol. Food Sci., vol. 10, no. 1, pp. 28–32, 2020, doi: 10.15414/jmbfs.2020.10.1.28-32.

L. PRATIWI, M. S. RACHMAN, and N. HIDAYATI, “Ektraksi Minyak Atsiri Dari Bunga Cengkeh Dengan Pelarut Etanol Dan N-Heksana,” Univ. Res. Colloq., vol. 2, pp. 655–661, 2016.

N. TITAHELU, J. LATUNY, C. SOPHIA, E. TUPAMAHU, S. JOSEP, and E. SARWUNA, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, 2021.

D. G. PRABHANJAN, G. S. V. RAGHAVAN, and T. J. RENNIE, “Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger,” Int. Commun. Heat Mass Transf., vol. 29, no. 2, pp. 185–191, 2002, doi: 10.1016/S0735-1933(02)00309-3.

S. A. NADA, R. KHATER, and M. A. MAHMOUD, “Thermal characteristics enhancement of helical cooling-dehumidifying coils using strips fins,” Therm. Sci. Eng. Prog., vol. 16, no. August 2019, p. 100482, 2020, doi: 10.1016/j.tsep.2020.100482.

P. CORONEL and K. P. SANDEEP, “Heat transfer coefficient in helical heat exchangers under turbulent flow conditions,” Int. J. Food Eng., vol. 4, no. 1, 2008, doi: 10.2202/1556-3758.1209.

N. D. SHIRGIRE, “Review on Comparative Study between Helical Coil and Straight Tube Heat Exchanger,” IOSR J. Mech. Civ. Eng., vol. 8, no. 2, pp. 55–59, 2013, doi: 10.9790/1684-0825559.

S. R. GURAV, “Parametric Comparison of Heat Transfer in Helical and Straight Tube-In-Tube Heat Exchanger,” Int. J. Sci. Res., vol. 4, no. 8, pp. 990–993, 2015, [Online]. Available: https://www.ijsr.net/archive/v4i8/SUB157502.pdf.

M. MOAWED, “Experimental study of forced convection from helical coiled tubes with different parameters,” Energy Convers. Manag., vol. 52, no. 2, pp. 1150–1156, 2011, doi: 10.1016/j.enconman.2010.09.009.

N. GHORBANI, H. TAHERIAN, M. GORJI, and H. MIRGOLBABAEI, “Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers,” Exp. Therm. Fluid Sci., vol. 34, no. 7, pp. 900–905, 2010, doi: 10.1016/j.expthermflusci.2010.02.004.

J. FERNÁNDEZ-SEARA, C. PIÑEIRO-PONTEVEDRA, and J. A. DOPAZO, “On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation,” Appl. Therm. Eng., vol. 62, no. 2, pp. 680–689, 2014, doi: 10.1016/j.applthermaleng.2013.09.054.

A. ALIMORADI and F. VEYSI, “Prediction of heat transfer coefficients of shell and coiled tube heat exchangers using numerical method and experimental validation,” International Journal of Thermal Sciences, vol. 107. pp. 196–208, 2016, doi: 10.1016/j.ijthermalsci.2016.04.010.

A. HATUMESSEN, N. TITAHELU, and C. S. TUPAMAHU, “Analisis Efektivitas Penukar Kalor Pipa Helikal Destilasi Minyak Atsiri Kayu Putih,” in Archipelago Engineering (ALE), 2021, pp. 127–132, doi: https://doi.org/10.30598/ale.4.2021.127-132.

J. WU, X. LI, H. LIU, K. ZHAO, and S. LIU, “Calculation method of gas–liquid two-phase boiling heat transfer in helically-coiled tube based on separated phase flow model,” Int. J. Heat Mass Transf., vol. 161, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120242.

H. MIRGOLBABAEI, “Numerical investigation of vertical helically coiled tube heat exchangers thermal performance,” Appl. Therm. Eng., vol. 136, no. January, pp. 252–259, 2018, doi: 10.1016/j.applthermaleng.2018.02.061.

A. SHEEBA, C. M. ABHIJITH, and M. JOSE PRAKASH, “Experimental and numerical investigations on the heat transfer and flow characteristics of a helical coil heat exchanger,” Int. J. Refrig., vol. 99, pp. 490–497, 2019, doi: 10.1016/j.ijrefrig.2018.12.002.

S. R. YAN et al., “A critique of effectiveness concept for heat exchangers; theoretical-experimental study,” Int. J. Heat Mass Transf., vol. 159, p. 120160, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120160.

J. S. JAYAKUMAR, S. M. MAHAJANI, J. C. MANDAL, P. K. VIJAYAN, and R. BHOI, “Experimental and CFD estimation of heat transfer in helically coiled heat exchangers,” Chem. Eng. Res. Des., vol. 86, no. 3, pp. 221–232, 2008, doi: 10.1016/j.cherd.2007.10.021.

M. MOAWED, “Experimental investigation of natural convection from vertical and horizontal helicoidal pipes in HVAC applications,” Energy Convers. Manag., vol. 46, no. 18–19, pp. 2996–3013, 2005, doi: 10.1016/j.enconman.2005.02.002.

A. D. TUNCER, A. SÖZEN, A. KHANLARI, E. Y. GÜRBÜZ, and H. İ. VARIYENLI, “Analysis of thermal performance of an improved shell and helically coiled heat exchanger,” Appl. Therm. Eng., vol. 184, 2021, doi: 10.1016/j.applthermaleng.2020.116272.

M. ATTALLA and H. M. MAGHRABIE, “Investigation of effectiveness and pumping power of plate heat exchanger with rough surface,” Chem. Eng. Sci., vol. 211, p. 115277, 2020, doi: 10.1016/j.ces.2019.115277.

M. S. MAHDI, H. B. MAHOOD, A. A. KHADOM, A. N. CAMPBELL, M. HASAN, and A. O. SHARIF, “Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications,” Therm. Sci. Eng. Prog., vol. 10, no. November 2018, pp. 287–298, 2019, doi: 10.1016/j.tsep.2019.02.010.

R. RAMESH, S. N. MURUGESAN, C. NARENDRAN, and R. SARAVANAN. “Experimental investigations on shell and helical coil solution heat exchanger in NH3 - H2O vapor absorption refrigeration system,” Int. Commun. Heat Mass Transf., vol. 87, pp. 6 - 13, 2017, doi: 10.1016/j.icheatmasstransfer.2017.06.010.

Downloads

Published

2023-05-29

How to Cite

Titahelu, N., Pelupessy, D. S., Tupamahu, C. S. E., & Rumagutawan, A. F. (2023). MENINGKATKAN EFEKTIVITAS KONDENSOR VERTIKAL PIPA HELIKAL KOIL UNTUK DESTILASI MINYAK ATSIRI SEREH. Jurnal Rekayasa Mesin, 14(1), 235–249. https://doi.org/10.21776/jrm.v14i1.1219

Issue

Section

Articles