ANALISA PENGARUH SUHU PERLAKUAN PANAS TERHADAP PROPERTI MEKANIK KOMPOSIT AL-TIC 3% DENGAN METODE COOLING SLOPE SUDUT KEMIRINGAN 45°
DOI:
https://doi.org/10.21776/jrm.v14i2.1206Keywords:
Stress Threshold, Stress Corrosion Cracking, Constant Load Test, Capacitive Discharge WeldingAbstract
On the industrial side, the selection of materials for a product produced by a company must be following the function and purpose of the product. There are many types of materials used by various companies in the manufacture of a product, one of which is aluminium. This study aims to determine the effect of temperature variations of 3% Al-TiC Composite Heat Treatment 350°C, 450°C, 550°C on the mechanical properties and microstructure with the cooling slope method. The casting process is carried out using A356 aluminium material and the addition of 3% titanium carbide (TiC). The casting results are poured into a permanent mould through a cooling slope with a pouring angle of 45°. And finally carried out by heat treatment on the test object with temperature variations of 350°C, 450°C, 550°C with oil cooling media SAE 40. The highest hardness was obtained at a heat treatment temperature of 550°C with a value of 64.25 BHN, at a temperature of 450°C with a value of 60.02 BHN, and 350°C with a value of 56.59 BHN. The highest tensile strength was obtained at a heat treatment temperature of 550°C of 219,862 MPa, a temperature of 450°C of 183,273 MPa, and 350°C of 164,328 MPa. The obtained microstructure shows hypo-eutectic silicon dispersed among the aluminium. The microstructure shows that the homogenization of silicon and TiC at a heat treatment temperature of 550°C is very good, as evidenced by the uniformly dispersed density of the alloy filling the aluminium matrix.
References
Dwivedi, S.P., Sharma, S., Mishra, R.K.., Microstructure and Mechanical Properties of A356/SiC Composites Fabricated by Electromagnetic Stir Casting, In pp. 1524–1532 Material Science, Elsevier, India, 2014.
Azushima, A., R.Kopp, A.Korkohen, D.Y.Yang, F.Micari, G.D.Lahoti., “Severe Plastic Deformation (SPD) Process for Metals”, Vol.57., pp.716 735, CIRP Annuals Manufacture Technology , 2008.
Yuqing., Ultra-Fine Grained Steel, Metallurgical Industry Press Trans., 2009.
Tata S, Shinroku S., Pengetahuan Bahan Teknik, hal 905-911, Pradnya paramita, Jakarta, 1999.
D.M. Adss., Effect Of Cooling Slope Casting Parameters On The Thixotropic Microstructure Of A356 Aluminum Alloy., 2015
Purnomo.,”Pengaruh Pengecoran Ulang Terhadap Kekuatan tarik dan Ketangguhan Impak pada Paduan Aluminium 320”, Jurnal Proceedings, hal 905-911, Komputer dan Sistem Intelijen Auditorium Universitas Gunadarma, Jakarta , 2004.
Hartomo , A. J., Komposite Metal. Yogyakarta: Andi Offset., 1992
Hermawan, Rizki., Pengaruh variasi temperatur Heat Treatment Aluminium Composite Rolled pada suhu 350 oC, 450 oC, 550 oC terhadap sifat mekanik dan mikrostruktur, Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara., 2020
Maulana, Abdi., Analisa Pengaruh Thermomechanical Treatment Hot Rolling variasi reduksi pengerolan 10%,20% dan 30% pada aluminium komposit Al-TiC 0,19% terhadap sifat mekanik dan mikrostruktur, Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara., 2020
Iswara, Yoga., Analisa Pengaruh variasi reduksi Thermomechanical Treatment Hot Rolling terhadap sifat mekamik dan mikrotruktur Aluminium A356 dengan tekanan 35 MPA metode Squeeze Casting, Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara., 2020.
Alwizar, Hanif., Pengaruh variasi temperatur Heat Treatment alumunium Composite Rolled dengan campuran 2% Silicon Carbida pada suhu 350o C, 450 o C, 550 o C terhadap sifat mekanik dan Mikrostruktur, Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara., 2020.
Van den berg MARK R., Alumunium MMC, 1998.
Y.C. Lee, A.K. Dahle, D.H. StJohn,. The role of solute in grain refinement of magnesium, Metallurgical and Materials Transactions, A. 31 2895–2906. doi:10.1007/BF02830349, 2000.
Totten, George E., “Handbook of Aluminium Vol 1 Physical Metallurgi and Process”, New York., 2003.
Alamsyah, M. F., Laporan Praktikum Struktur Dan Sifat Mekanik, Universitas Diponegoro, Semarang., 2008.
Bondan T. Sofyan, 2008, Peran1 Dan 9 Wt. % Zn Dalam Proses Pengerasan Presipitasi Paduan Aluminium AA319, http:www.wikipedia.com/. html/Bondan T. Sofyan/2008―Makara, Teknologi, Volume, 12, No. 1. Diakses: November 2019.
Dhanashekar M, Kumar VS., Squeeze casting of aluminium metal matrix composites-an overview. Procedia Engineering 97:412– 420,. 2014.
Yue, T.M. and G.A. Chadwick.,” SqueezeCasting of Light Alloys and Their Composites”, Journal of Material Processing Technology, V. 58, N. 2 – 3, Des. 1996.
Roberts, William L., Hot Rolling of Steel, CRC Press, ISBN 978-0- 8247-1345-4., 1983
Nafsan U, Eko P.,“Perancangan Dan Pembuatan Alat Roll Plat. Jurnal Ilmiah Teknik Mesin Mekanikal”, V. 8, N. 1, 2012.
Adithya, Bayu.,”Studi Pengaruh Temperatur Tuang Terhadap Sifat Mekanis dan Mikrostruktur Aluminium A356 Menggunakan Pengecoran Metode Cooling Slope”, Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara., 2019.
M E 10., “Standard Test Method For Brinell Hardness Of Metalic Materials”, Hibbeler, R,C.. ,Mechanics of Material., Eight Edition. USA: Pearson Printice Hall, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Farida Ariani, Diky Setiawan Hutabarat
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.