• Subardi Adi Institut Teknologi Nasional Yogyakarta



SOFC, Cathode, Symmetrical Cell, Electrochemical Properties


The oxides SmBa0.8Sr0.2Co2O5+δ (SBSC) have been explored as cathode materials for IT-SOFCs using SDC as the electrolyte. XRD was used to determine the structure of SBSC powder, and SEM was used to observe the morphology of the microstructure. Thermogravimetric Analysis (TGA) is used to measure the change in amount and rate in weight of SBSC cathode powder as a function of temperature in a controlled atmosphere. Symmetrical cells were tested using a potentiostat Voltalab PGZ 301. The weight loss of SBSC oxide during the heating temperature range between room temperature and 800 oC was 0.003%. Electrochemical impedance spectroscopy (EIS), low field (LF), and high field (HF) approaches are used to obtain activation energy (Ea) values of 99.77 kJ mol-1, 70.26 kJ mol-1, and 73.10 kJ mol-1. The Ea of polarization resistance (Rp) for the SBSC cathode reaches 104.59 kJ mol-1. The well-connected cathode-electrolyte contact determines the low resistance, and the SBSC cathode particle size is consistently dispersed in the interval of 1-1.5 µm.


N. SETIAWAN, C.J. TSENG, C.T., SHEN, I. WARDANA, “Pengaruh Doping Cu Terhadap Karater-isasi Material Anoda Ni1-xCuxBCZY Untuk PSOFC”, Rekayasa Mesin, v. 16, pp. 441–447, Sep. 2020.

F.P., LOHMANN, P.S.C, SCHULZE, M. WAGNER, O. NAUMOV, A. LOTNYK, B. ABEL, A. VAR-GA, “The next generation solid acid fuel cell electrodes: stable, high performance with minimized catalyst loading”, J. Mater. Chem., v. 5, pp. 15021–15025, Jun. 2017.

B. TJADEN, M. GANDIGLIO, A. LANZINI, “Small-scale biogas-SOFC plant: technical analysis and assessment of different fuel reforming options”, Energy Fuels, v. 28, pp. 4216–4242, May 2014.

T. PIRASACI, “Non-uniform, multi-stack solid oxide fuel cell (SOFC) system design for small sys-tem size and high efficiency”, J Power Sources, v. 426, pp. 135-142, Jun. 2019.

A. FUENTE-CUESTA, C. JIANG, A. ARENILLAS, J.T., IRVINE, “Role of coal characteristics in the electrochemical behaviour of hybrid direct carbon fuel cells”, Energy Environ. Sci., v. 9, pp. 2868–22880, Aug. 2016.

C. ZUO, M. LIU, “Solid Oxide Fuel Cells Springer Science Business Media”, New York, 2012.

L. ZHU, B. WEI, Z.H. WANG, K.F. CHEN, H.W. ZHANG, Y.H. ZHANG, X.Q. HUANG, Z. LUE, “Electrochemically driven deactivation and recovery in PrBaCo2O5+δ oxygen electrodes for reversible solid oxide fuel cells”, Chemsuschem, v. 9, pp. 2443–2450, Aug. 2016.

Q. ZHOU, T. HE, Y. JI, “SmBaCo2O5+δ double-perovskite structure cathode material for intermediate-temperature solid oxide fuel cells”, J. Power Sources, v. 185, pp. 754–758, Dec. 2008.

R. PELOSATO, G. CORDARO, D. STUCCHI, C. CRISTIANI, G. DOTELLI, “Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: A brief review”, J. Power Sources, v. 298, pp. 46–67, Dec. 2015.

S.B., ADLER, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chemical Reviews, v. 104 (10), pp. 4791–4844, Oct. 2004.

A. SUBARDI, K.Y. LIAO, Y.P. FU, “Oxygen permeation, thermal expansion behavior and electro-chemical properties of LaBa0.5Sr0.5Co2O5+δ cathode for SOFCs”, RSC Advances, v. 7, pp. 14487–14495, Mar. 2017.

A. SUBARDI, C.C. CHEN, Y.P. FU, “Oxygen transportation, electrical conductivity and electrochem-ical properties of layered perovskite SmBa0.5Sr0.5Co2O5+δ, Int. J. Hydrogen Energy, v. 42, pp. 5284–5294, Feb. 2017.

H. GU, H. CHEN, L. GAO, Y. ZHENG, X. ZHU, L. GUO, “Oxygen reduction mechanism of NdBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells under cathodic polariza-tion”, Int. J. Hydrogen Energy, v. 34, pp. 2416–2420, Mar. 2009.

X. KONG, X. DING, “Novel layered perovskite SmBaCu2O5+δ as a potential cathode for intermediate temperature solid oxide fuel cells”, Int. J. Hydrogen Energy, v. 36, pp. 15715–15721, Dec. 2011.

J.H. KIM, Y. KIM, P.A. CONNOR, J.T.S IRVINE, J. BAE, W. ZHOU, “Structural, thermal and elec-trochemical properties of layered perovskite SmBaCo2O5+δ a potential cathode material for intermedi-ate-temperature solid oxide fuel cells”, Journal of Power Sources, v. 194, pp. 704–711, Dec. 2009.

W. LIU, C. YANG, X. WU, H. GAO, Z. CHEN, “Oxygen relaxation and phase transition in GdBaCo2O5+δ oxide”, Solid State Ionics, v. 192, pp. 245–247, Jun. 2011.

S. LÜ, G. LONG, X. MENG, Y. JI, B. LÜ, H. ZHAO, “PrBa0.5Sr0.5Co2O5+δ as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells”, Int. J. Hydrogen Energy, v. 37, pp. 5914–5919, Apr. 2012.

A. SUBARDI, C.C. C.H. CHENG, Y.P. FU, “Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δcathode for intermediate solid oxide fuel cells”, Int. J. Hydrogen Energy, v. 39, pp. 20783–20790, Dec. 2014.

S.B. ADLER, B.T. HENDERSON, M.A. WILSON, D.M. TAYLOR D, R.E. RICHARDS, “Reference electrode placement and seals in electrochemical oxygen generators”, Solid State Ion, v. 134, pp. 35–42, Oct. 2000.

Y.P. FU, R.H. CHEN, M.Y. HSIEH, A. SUBARDI, W.K. CHANG, “Double Perovskite LaSrCo1.6Cu0.4O5-δ Cathode for IT-SOFCswith Pulsed Laser Technique Deposited Bi-Layer Electro-lyte”, Journal of The Electrochemical Society, v. 162, pp. F1029–F1035, Jul. 2015.

S.H. CHAN, X.J. CHEN, K.A. KHOR, “Reliability and accuracy of measured overpotential in a three-electrode fuel cell system”, J Appl Electrochem., v. 31, pp. 1163–1170, Oct. 2001.

J. PIAO, K. SUN, N. ZHANG, X. CHEN, S. XU, D. ZHOU, “Preparation and characterization of Pr1-xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells”, J Power Sources, v. 172, pp. 633–640, Oct. 2007.

J. LIU, A.C. CO, B. PAULSON, V.I. BIRSS, “Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathode”, Solid State Ion, v. 177, pp. 377–387, Jan. 2006.

J.O.M. BOCKRIS, A.K.N. REDDY, “Modern electrochemistry: an introduction to an interdisciplinary area”, New York: Plenum Publishing Corporation, 1977.

A. SUBARDI, K.Y. LIAO, Y.P. FU, “Oxygen transport, thermal and electrochemical properties of NdBa0.5Sr0.5Co2O5+δcathode for SOFCs”, Journal of the European Ceramic Society, v. 39, pp. 30–40, Feb. 2019.

J.H. NAM, D.H. JEON, “A Comprehensive microscale model for transport and reaction in intermedi-ate temperature solid oxide fuel cell”, Electrochim Acta, v. 51, 3446–34460, Apr. 2006.

M. ANDERSON, J. YUAN, B. SUNDEN, “Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cell”, Appl Energy, v. 87, pp. 1461–1476, May 2010.