• Dewa Putra Negara Dewa Udayana University
  • I Made Widiyarta Made Udayana University
  • Tjokorda Gde Tirta Nindhia Tjokorda Udayana University
  • Anton S Ferdinand Ferdinand Udayana University




Activated Carbon, Coffee, Pore Structure, Activation, Holding Time


Activated carbon has a high adsorption capacity due to its high porosity. The pore structure of activated carbon is largely affected by the chemical composition of the raw material and the parameters of the manufacturing process. This article aims to determine the pore structure of activated carbon from brewed coffee. The manufacture of activated carbon is carried out in one step of carbonization and activation in the same reactor and furnace. The sample was carbonized by heating to a temperature of 650 C, then immediately activated at that temperature by flowing nitrogen with 30, 60, and 90 minutes variations. The resulting activated carbons are marked as K-A30, K-A60, and K-A90 for activation holding times of 30, 60, and 90 minutes, respectively. Then the activated carbon was characterized to determine their proximate composition, morphology, and surface pore structure. The results showed that activated carbon under an activation holding time of 60 minutes (K-A60) had the highest fixed carbon content of 71.67%. Meanwhile, generally, the activated carbon K-A30 has the best pore structure due to it having the highest pore surface area (121.765 m2/g), pore-volume (0.058 cc/g), and nitrogen adsorption capacity (37.692 cc/g) with an average pore diameter of 1.915 nm. This research is urgent because it can convert brewed coffee grounds into activated carbon with such pore structure characteristics and potently applied to various adsorption applications.


J. PALLARÉS, A. GONZÁLEZ-CENCERRADO, I. ARAUZO., “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass and Bioenergy, v. 115, pp. 64-73, April 2018, doi: 10.1016/j.biombioe.2018.04.015.

S. KOONAPHAPDEELERT, J. MORAN, P. AGGARANGSI, A. BUNKHAM., “Energy for sus-tainable development low pressure biomethane gas adsorption by activated carbon,” Energy Sustain. Dev., v. 43, pp. 196–202, 2018, doi: 10.1016/j.esd.2018.01.010.

B. N. HO, D. PINO-PEREZ, C. M. GHIMBEU, J. DIAZ, D. PEREDO-MANCILLA, C. HORT, D. BES-SIERES., “Determination of methane, ethane and propane on activated carbons by experimental pres-sure swing adsorption method,” Journal of Natural Gas Science Engineering,” v. 95, pp. 1-10, No-vember 2021, doi: 10.1016/j.jngse.2021.104124.

Y. ZHENG, Q. LI, C. YUAN, Q. TAO, Y. ZHAO, G. ZHANG, J. LIU, G. QI., “Thermodynamic analy-sis of high-pressure methane adsorption on coal-based activated carbon,” Fuel, v. 230, pp. 172–184, April 2018, doi: 10.1016/j.fuel.2018.05.056.

M. FAROOQ, M. N. ALMUSTAPHA, M. IMRAN, M. A. SAEED, J. M. ANDRESEN., “Bioresource technology in-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas,” Bioresource Technology, v. 249, pp. 125–131, July 2017, doi: 10.1016/j.biortech.2017.09.198.

I. DURÁN, F. RUBIERA, AND C. PEVIDA., “Biogas purification by means of adsorption on pine saw-dust-based activated carbon : Impact of water vapor,” Chemical Engineering Journal, v. 353, no, pp. 197–207, July 2018, doi: 10.1016/j.cej.2018.07.100.

F. BARJASTEH-ASKARI, M. DAVOUDI, M. DOLATABADI, S. AHMADZADEH., “Iron-modified activated carbon derived from agro-waste for enhanced dye removal from aqueous solutions,” Heli-yon, v. 7, n. 6, pp. 1-8, 2021, doi: 10.1016/j.heliyon.2021.e07191.

S.H. KHALIL, “Effects on surface area, intake capacity and regeneration of impregnated palm-shell activated carbon with monoethanolamide and 2-Amino-2-Methyl- 1-Propanol equipped for CO2 adsorption,” J. Earth Sci. Clim. Change, v. 9, n. 7, pp. 1–10, 2018, doi: 10.4172/2157-7617.1000484.

J. HAN, L. ZHANG, B. ZHAO, L. QIN, Y. WANG, F. XING., “The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption,” Industrial Crops &. Products, v. 128, pp. 290–297, November 2018, doi: 10.1016/j.cej.2012.11.050.

D. A. KHUONGAB, H. N. NGUYEN, T. TSUBOTA., “Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents,” Biomass and Bioenergy, v. 148, pp. 1-7, Maret 2021, doi: 10.1016/j.biombioe.2021.106039.

Q. PU, J. ZOU, J. WANG, S. LU,P. NING, L. HUANG, Q. WANG ., “Systematic study of dynamic CO2 adsorption on activated carbons derived from different biomass,” Journal of Alloys and Com-pounds, v. 887, pp. 1-14, 2021.

Z. WANG, H. KUANG, J. ZHANG, L. CHU, Y. JI, “Experimental study on the removal of real exhaust pollutants from a diesel engine by activated carbon,” Applied Sciences, v. 9, pp. 1-11, July 2019, doi: 10.3390/app9153175.

A. HAMID, M. ABDULLAH, I.D. FEBRIANA, H.E. KURNIAWAN, H.D. WILUJENG, S.D. WIJA-YA., “Pemanfaatan karbon aktif dari limbah kulit pisang untuk catalytic converter pada mesin diesel,” Rekayasa Mesin, v. 20, pp. 709–716, Nopember 2021, doi.org/10.21776/ub.jrm.2021.012.03.20

F. CHENG, X. YANG, S. ZHANG, W. LU., “Boosting the supercapacitor performances of activated carbon with carbon nanomaterials,” J. Power Sources, v. 450, December 2019, doi: 10.1016/j.jpowsour.2019.227678.

D. N. K. P. NEGARA, T. G. T. NINDHIA, M. SUCIPTA, I. W. SURATA, K. S. ASTRAWAN, I. P. H. WANGSA, “Simultaneous adsorption of motorcycle emissions through bamboo-activated carbon,” Int. J. Glob. Energy Issues, v. 43, n. 2–3, pp. 199–210, 2021, doi: 10.1504/ijgei.2021.115144.

D. N. K. P. NEGARA, T. G. T. NINDHIA, I. W. SURATA, F. HIDAJAT, M. SUCIPTA, “Nanopore struc-tures, surface morphology, and adsorption capacity of tabah bamboo-activated carbons,” Surfaces and Interfaces, v. 16, pp. 22-26, 2019, doi: 10.1016/j.surfin.2019.04.002.

L. MING, X. RUI, “Preparation of a dual Structure activated carbon from rice husk char as an ad-sorbent for CO2 capture,” Fuel Processing Technology, v. 186, pp. 35-39, April 2019, doi: 10.1016/j.fuproc.2018.12.015.

Y. FU, Y. SHEN, Z. ZHANG, X. GE, M. CHEN, “Activated bio-chars derived from rice husk via one-and two-step KOH-catalyzed pyrolysis for phenol adsorption,” Science of The Total Environment, v. 646, pp. 1567-1577, January 2019, doi: 10.1016/j.scitotenv.2018.07.423.

V. H. NGUYEN, D.T. NGUYEN, T.T. NGUYEN, H.P.T. NGUYEN, H.B. KHUAT, T.H. NGUYEN, V.K. TRAN, S. WOONG CHANG, P. NGUYEN-TRI, D.D. NGUYEN, D.D. LA., “Activated carbon with ultra-high surface area derived from sawdust biowaste for the removal of rhodamine B in water,” Environ-mental Technology Innovation, v. 24, pp. 1-10, 2021, doi: 10.1016/j.eti.2021.101811.

S. SUN, Q. YU, M. LI, H. ZHAO, C. WU, “ Preparation of coffee-shell activated carbon and its application for water vapor adsorption”, Renew. Energy, v. 142, pp. 11–19, 2019, doi: 10.1016/j.renene.2019.04.097.

G. BENSIDHOM, A. BEN HASSEN-TRABELSI, K. ALPER, M. SGHAIROUN, K. ZAAFOURI, I. TRABELSI, “Pyrolysis of date palm waste in a fixed-bed reaktor: Characterization of pyrolytic products,” Bioresour. Technol., vol. 247, pp. 363–369, 2018, doi: 10.1016/j.biortech.2017.09.066.

SUHENDRAYATNA, M. APRIANTI, P. N. SHEILLA, I. MACHDAR, E. ELVITRIANA, “Optimization process of carbon mono oxide (CO) gas emission adsorption using activated carbon from rice husk,” J. Phys. Conf. Ser., v. 1114, n. 1, pp. 1-9, 2018, doi: 10.1088/1742-6596/1114/1/012014.

J. ZHOU, A. LUO, Y. ZHAO, “Preparation and characterisation of activated carbon from waste tea by physical activation using steam,” J. Air Waste Manag. Assoc., v. 68, n. 12, pp. 1269–1277, 2018, doi: 10.1080/10962247.2018.1460282.

H. NAM, W. CHOI, D. A. GENUINO, S. C. CAPAREDA, “Development of rice straw activated carbon and its utilizations,” J. Environ. Chem. Eng., v. 6, n. 4, pp. 5221–5229, 2018, doi: 10.1016/j.jece.2018.07.045.

F. F. POLII, “Pengaruh suhu dan lama aktifasi terhadap mutu arang aktif dari kayu kelapa. (Effects of activation temperature and duration time on the quality of the active charcoal of coconut wood)”, J. Ind. Has. Perkeb., vol. 12, no. 2, pp. 21-28, 2017, doi: 10.33104/jihp.v12i2.1672.

S. OKO, MUSTAFA, A. KURNIAWAN, E. S. B. PALULUN, “Pengaruh suhu dan konsentrasi aktivator hcl terhadap karakteristik karbon aktif dari ampas kopi,” Metana : Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna”, v. 17, no. 1, pp. 15–21, 2021, https://ejournal.undip.ac.id/index.php/metana/article/download/37702/19519.

S. HUDA, R. D. RATNANI, L. KURNIASARI, “ Karakterisasi karbon aktif dari bambu ori (bambusa arundinacea) yang di aktivasi menggunakan asam klorida (HCl)", Inovasi Teknik Kimia, v. 5, no. 1, pp. 22-27. https://publikasiilmiah.unwahas.ac.id/index.php/inteka/article/view/3397/3155