THE IMPACT STRENGTH AND CORROSION RATE OF THE GTAW WELDING TECHNIQUE ON AA5083 MATERIAL

Authors

  • Dhanang Suryo Prayogo Brawijaya University
  • Sugiarto Sugiarto Brawijaya University
  • Putu Hadi Setyarini Brawijaya University

DOI:

https://doi.org/10.21776/jrm.v14i1.1121

Keywords:

AA5083, Corrosion Tester 3-Electrode Device, Corrosion Rate, Impact Strength

Abstract

The 5xx series of Aluminium has strong corrosion resistance, excellent weldability, and good cold workability and also medium strength. This series is being utilized extensively in marine building applications for the construction of Oil tankers, pressure vessels, offshore, ships and other vessels. The purpose of this study is to verify and to ascertain how the welding process affects the corrosion rate and impact strength of 5083 Aluminium. In this experiment, four AA 5083 specimens were warmed to chosen variations of 50°C, 100°C, 150°C, 200°C, and 250°C. The amount of energy absorbed during the fracture process was then determined by subjecting the welding results to a Charpy impact test with varying loads. The best specimen was tested for corrosion rate using the Corrosion Tester 3-Electrode device after comparing impact toughness. According to the study's findings, the specimen with a 250°C preheating step had the maximum impact toughness (0.415) and corrosion rate (0.11353 mmPy).

References

CALLISTER, W., & RETHWISCH, D. "Materials science and engineering: an introduction". In Mate-rials Science and Engineering. https://doi.org/10.1016/0025-5416(87)90343-0.

AHMAD, R., & BAKAR, M. A. "Effect of a post-weld heat treatment on the mechanical and micro-structure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer meth-od". Materials & Design, 32(10), 5120–5126.

DAVIS, D., "Aluminum and Aluminum Alloys". Light Metals and Alloys, 66. https://doi.org/10.1361/autb2001p351.

OVERBAGH, W. H. "Use of aluminum in automotive space frames". SAE Technical Papers, 412. https://doi.org/10.4271/950721.

LIAO, X., KONG, X., DONG, P., & CHEN, K. "Effect of Pre-Aging, Over-Aging and Re-Aging on Exfoliation Corrosion and Electrochemical Corrosion Behavior of Al-Zn-Mg-Cu Alloys". pp 81–88. https://doi.org/10.4236/msce.2020.82008.

ZHANG, W. ROLLING. "Partial and Full Annealing of 6061 Characterization of Microstructure, Ten-sile Strengths and Ductility". Materials Sciences and Applications, v. 07 n. 09 pp. 453–464. https://doi.org/10.4236/msa.2016.79040.

LÖVEBORN, D., LARSSON, J.K., and PERSSON, K.A., “Weldability of Aluminium Alloys for Au-tomotive Applications” Phys. Procedia, vol. 89, pp. 89–99, 2017, doi: 10.1016/j.phpro.2017.08.011.

SASHANK, J.S., SAMPATH, P., KRISHNA, P.S., SAGAR, R., VENUKUMAR, S., and MUTHUKU-MARAN, S., “Effects of friction stir welding on microstructure and mechanical properties of 6063 al-uminium alloy,” Materials Today Proceeding., vol. 5, no. 2, pp. 8348–8353, 2018, doi: 10.1016/j.matpr.2017.11.527.

LIU, F., et.al., “Influence of waveforms on Laser-MIG hybrid welding characteristics of 5052 alumi-num alloy assisted by magnetic field,” Opt. Laser Technology., vol. 132, June, p. 106508, 2020, doi: 10.1016/j.optlastec.2020.106508.

GRIMSMO, E.L., CLAUSEN, A.H., AALBERG, A., and LANGSETH, M., “Fillet welds subjected to impact loading – an experimental study,” International Journal Impact Engineering., vol. 108, pp. 101–113, 2017, doi: 10.1016/j.ijimpeng.2017.02.023.

MOHANAVEL, V., RAVICHANDRAN, M., SURESH KUMAR, S., “Optimization of tungsten inert gas welding parameters to attain maximum impact strength in AA6061 alloy joints using Taguchi Technique,” Materials Today Proceeding., vol. 5, no. 11, pp. 25112–25120, 2018, doi: 10.1016/j.matpr.2018.10.312.

KUNIGITA, M., et al., “Prediction of steel weld HAZ Charpy impact property based on stochastic fracture model incorporating microstructural parameters,” Procedia Structural Integrity., vol. 13, pp. 198–203, 2018, doi: 10.1016/j.prostr.2018.12.033.

SATHISH KUMAR, M., GOPI, S., SIVASHANMUGAM, N., SASIKUMAR, A., “A study on corrosion behavior of stainless steel dissimilar alloy weld joints (321 & 347),” Materials Today Proceeding., pp. 2019–2021, 2020, doi: 10.1016/j.matpr.2020.01.475.

AHMAD, H.W., CHAUDRY, U.M., TARIQ, M.R., SHOUKAT, A.A., and BAE, D.H., “Assessment of fatigue and electrochemical corrosion characteristics of dissimilar materials weld between alloy 617 and 12 Cr steel,” Journal of Manufacturing Process., vol. 53, November 2019, pp. 275–282, 2020, doi: 10.1016/j.jmapro.2020.02.038.

REYNA-MONTOYA, J.S., GARCÍA-RENTERÍA, M.A., CRUZ-HERNÁNDEZ, V.L., CURIEL-LÓPEZ, F.F., DZIB-PÉREZ, L.R., FALCÓN-FRANCO, L.A., “Effect of electromagnetic interaction on microstructure and corrosion resistance of 7075 aluminium alloy during modified indirect electric arc welding process,” Transaction of Nonferrous Metal Society of China (English Ed., vol. 29, no. 3, pp. 473–484, 2019, doi: 10.1016/S1003-6326(19)64956-3.

AMBADE, S., SHARMA, A., PATIL, A., and PURI, Y., “Effect of welding processes and heat input on corrosion behaviour of Ferritic stainless steel 409M,” Materials Today Proceeding., 2020, doi: 10.1016/j.matpr.2020.06.251.

ZHAO, W., FENG, G., ZHANG, M., REN, H., and SINSABVARODOM, C., “Effect of low tempera-ture on fatigue crack propagation rates of DH36 steel and its butt weld,” Ocean Engineering., vol. 196, November, p. 106803, 2020, doi: 10.1016/j.oceaneng.2019.106803.

JATMOKO, A., IRAWAN, Y.S., CHOIRON, M.A., "Pengaruh kuat arus pengelasan dua layer dengan metode GTAW dan SMAW terhadap kekuatan tarik pada plat ASTM A36", Jurnal Rekayasa Mesin, v. 5, n. 2, pp. 107-112, 2014.

Sugiyono. Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. 2015,

MALAU, V. 2008. Pengaruh Perlakukan Panas Quench dan Temper terhadap Laju Keasian, Ketangguhan Impak, Kekuatan Tarik, dan Kekerasan Baja XW 42 untuk Keperluan Cetakan Keramik. Jurnal Media Teknik. Nomor 2 tahun XXX Edisi Mei 2008.Halaman 186-192

SUDJANA, HARDI. 2008. Teknik Pengecoran Logam, Jakarta: Direktor Pembinaan Sekolah Menengah Kejuruhan

YUWONO, A.H., Buku panduan praktikum karakteristik material I pengujian merusak (Destructive Testing). Jakarta: Departemen Metalurgi dan Material Fakultas Teknik UI, 2009. “Putaran tool Terhadap Struktur Mikro, Kekerasan dan Kekuatan impak pada Sambungan Las FSW Tak Sejenis Antara AA5083 dan AA6061-T6,” Yogyakarta: Departemen Teknik Mesin dan Industri UGM, 2015

SUBEKI, N., ILMAN, M. N., & ISWANTO, P. T. (2017). Minimizing Distortion by Transient Thermal Tensioning and Its Effect on Fatigue Crack Growth Behavior of Flux Cored Arc Steel Weld Joints. 9(2), 378–385. https://doi.org/10.21817/ijet/2017/v9i1/170902316

MURRABI, ABDUL LATIF DAN SULISTIJONO. "Pengaruh Konsentrasi Larutan Garam Terhadap Laju Korosi Dengan Metode Polarisasi Dan Uji Kekerasan Serta Uji Tekuk Pada Plat Bodi Mobil". Jurnal Teknik Pomits Volume 1 No. 1 Hal 1-5. 2012

WAHYUDIANTO AHMAD, 2017. Corrosion Behavior of AA5083 Friction Stirred Metal Welds Joint inside 3,5% NaCl Solution.

FX. A. WAHYUDIANTO, M.N. ILMAN, P.T. ISWANTO, KUSMONO, "Perilaku Korosi Sambungan Las FSW Tak Sejenis Antara AA5083 dan AA6061-T6 dengan Variasi Putaran Tool Dalam Larutan 3,5% NaCl" Jurnal Mekanika UNS pp. 56-59. (2016)

ARAVINDA, T., NIRANJAN, H. B., SATISH BABU, B., & UDAYA RAVI, M. "Solid State Diffusion Bonding Process-A Review". IOP Conference Series: Materials Science and Engineering, 1013(1). (2021). https://doi.org/10.1088/1757-899X/1013/1/012011

TAHIR, F., & YAPICI, G. G. "Effect of aging on the mechanical behavior of aluminum-steel compo-sites processed by accumulative roll bonding". Materials Today: Proceedings. (2021). https://doi.org/10.1016/J.MATPR.2021.04.362

NURDIN, A. 2017. Pengaruh Cleaning Pada Pengelasan Aluminium Clad 6061 Dengan proses Gas Tungsten Arc Welding (GTAW). v. 11 n. 3 pp. 209–222.

Downloads

Published

2023-05-29

How to Cite

Prayogo, D. S., Sugiarto, S., & Setyarini , P. H. (2023). THE IMPACT STRENGTH AND CORROSION RATE OF THE GTAW WELDING TECHNIQUE ON AA5083 MATERIAL. Jurnal Rekayasa Mesin, 14(1), 161–170. https://doi.org/10.21776/jrm.v14i1.1121

Issue

Section

Articles