• Samuel Eluzai Yedija Wijayanto Universitas Surabaya
  • Rico Handoko Universitas Surabaya
  • Jesslyne Chenia Noel Universitas Surabaya
  • Timotius William Anggawirawan Universitas Surabaya
  • The Jaya Suteja Universitas Surabaya



3D Printing, Compressive Strength, Filament Length, Infill Pattern, Prosthetic


3D Printing technology becomes a potential solution to build various customized leg prosthetics. As a leg prosthetic must be able to hold a compressive force, it is important to find the compressive strength of the 3D printed part. The aim of this research is to find the infill pattern type which produces the 3D printed part with the highest compressive strength and the shortest filament length. This research uses the Fused Filament Fabrication method to print 24 parts made of Polylactic Acid using 12 different infill patterns with 50% density. All printed parts are designed to replicate the ASTM D695 specimen. After that, the compressive strength of each part is measured by using a Universal Testing Machine. And the filament length of each part is estimated by using slicer software. Based on the experiment result, the infill pattern with the highest compressive strength is the 3D Honeycomb type. However, this infill pattern requires the longest filament length compared to other infill patterns. In order to achieve a similar value of compressive strength with the minimum required material, the Cubic type is recommended to be implemented.


YU, Z. et al., “Study on Effects of FDM 3D Printing Parameters on Mechanical Properties of Polylactic Acid,” IOP Conf. Ser. Mater. Sci. Eng., v. 688, n. 3, pp. 0–5, 2019, doi: 10.1088/1757-899X/688/3/033026.

DAVE, H. K. et al., “Compressive Strength of PLA based Scaffolds: Effect of layer height, Infill Density and Print Speed,” Int. J. Mod. Manuf. Technol., v. 11, n. 1, pp. 21–27, 2019.

SINGH, R., G. SINGH, J. SINGH, AND R. KUMAR, “Investigations for tensile, compressive and morphological properties of 3D printed functional prototypes of PLA-PEKK-HAp-CS,” J. Thermoplast. Compos. Mater., 2019, doi: 10.1177/0892705719870595.

ABBAS, T. F., F. M. OTHMAN, AND B. H. ALI, “Effect of infill Parameter on compression property in FDM Process,” Int. J. Eng. Res. and Application, v. 7, n. December, pp. 16–19, 2017, doi: 10.9790/9622-0710021619.

CHEN, R., L. BAICH, J. LAUER, D. SENESKY, AND G. MANOGHARAN, “Design for additive manufacturing - effects of part orientation, printer selection, and infill density on mechanical properties and production cost,” pp. 1–17, 2020, doi: 10.31224/

BALAMURUGAN, K., M. VENKATA PAVAN, S. K. AHAMAD ALI, AND G. KALUSURAMAN, “Compression and flexural study on PLA-Cu composite filament using FDM,” Mater. Today Proc., v. 44, pp. 1687–1691, 2021, doi: 10.1016/j.matpr.2020.11.858.

AFONSO, J. A., J. L. ALVES, G. CALDAS, B. P. GOUVEIA, AND J. BELINHA, “Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models,” n. August, 2020, doi: 10.1108/RPJ-03-2020-0043.

KHAN, S. F., M. M. ZUKHI, H. ZAKARIA, AND M. A. M. SAAD, “Optimise 3D printing parameter on the mechanical performance of PLA-wood fused filament fabrication,” IOP Conf. Ser. Mater. Sci. Eng., v. 670, n. 1, 2019, doi: 10.1088/1757-899X/670/1/012048.

KAIN, S., J. V. ECKER, A. HAIDER, M. MUSSO, AND A. PETUTSCHNIGG, “Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites,” Eur. J. Wood Wood Prod., v. 78, n. 1, pp. 65–74, 2020, doi: 10.1007/s00107-019-01473-0.

HUU, N. H., D. P. PHUOC, T. N. HUU, AND H. T. T. THU, “Optimization of the FDM Parameters to Improve the Compressive Strength of the PLA-copper Based Products,” IOP Conf. Ser. Mater. Sci. Eng., v. 530, n. 1, pp. 0–10, 2019, doi: 10.1088/1757-899X/530/1/012001.

HONG, J. H., T. YU, Z. CHEN, S. J. PARK, AND Y. H. KIM, “Improvement of flexural strength and compressive strength by heat treatment of PLA filament for 3D-printing,” Mod. Phys. Lett. B, v. 33, n. 14–15, pp. 3–7, 2019, doi: 10.1142/S0217984919400256.

ALOYAYDI, B., S. SIVASANKARAN, AND A. MUSTAFA, “Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid,” Polym. Test., v. 87, n. April, p. 106557, 2020, doi: 10.1016/j.polymertesting.2020.106557.

PARAB, S. AND N. ZAVERI, “Investigating the Influence of Infill Pattern on the Compressive Strength of Fused Deposition Modelled PLA Parts,” Lect. Notes Mech. Eng., n. April, pp. 239–247, 2020, doi: 10.1007/978-981-15-4485-9_25.

SILVA, C., A. I. PAIS, G. CALDAS, B. P. P. A. GOUVEIA, J. L. ALVES, AND J. BELINHA, “Study on 3D printing of gyroid-based structures for superior structural behaviour,” Prog. Addit. Manuf., n. 0123456789, 2021, doi: 10.1007/s40964-021-00191-5.

YADAV, P., A. SAHAI, AND R. S. SHARMA, “Strength and Surface Characteristics of FDM-Based 3D Printed PLA Parts for Multiple Infill Design Patterns,” J. Inst. Eng. Ser. C, v. 102, n. 1, pp. 197–207, 2021, doi: 10.1007/s40032-020-00625-z.

SUTEJA, J., “Effect of Infill Pattern, Infill Density, and Infill Angle on the Printing Time and Filament Length of 3D Printing,” J. Rekayasa Mesin, v. 12, n. 1, p. 145, 2021, doi: 10.21776/ub.jrm.2021.012.01.16.