PERFORMANCE SIMULATION ON THE SHELL AND TUBE OF HEAT EXCHANGER BY ASPEN HYSYS V.10

Authors

  • Erlinda Ningsih Institut Teknologi Adhi Tama Surabaya
  • Isa Albanna Institusi Teknologi Adhi Tama Surabaya
  • Aita Pudji Witari Institusi Teknologi Adhi Tama Surabaya
  • Gistanya Lindar Anggraini Institusi Teknologi Adhi Tama Surabaya

DOI:

https://doi.org/10.21776/jrm.v13i3.1078

Keywords:

Performnace, Simulation, Shell and Tube, Heat Exchanger, Aspen HYSYS

Abstract

Heat exchanger type shell and tube, which is the most commonly used heat exchanger in various industries. The efficiency of heat exchangers can be seen from their performance to affect its economy from a process. The purpose is to determine the influence of the hot fluid flow rate and the cold fluid on the overall heat transfer coefficient (U) and log mean temperature difference (ΔTLMTD) values. This simulation is done using Aspen HYSYS V.10 applications and obtained data of the total heat transfer coefficient (U) and ΔTLMTD values. The heat exchanger shell and tube used type 1-2 with single segment type 4 baffle, triangular tube layout, and shell length 1000mm. This simulation results in a hot fluid flow rate compared to reverse with the overall heat transfer coefficient and a cold fluid relative to the overall heat transfer coefficient, with the two best fluid flow rates at 2100 kg/h hot fluid and 1800 kg/h cold fluid at 10400 Kj/oC.h. The influence of the hot fluid flow rate on ΔTLMTD is relative to the straight, while the cold fluid flow rate is relative to the reverse, with the value of the second-best fluid flow rate at the 2100 kg/h hot fluid and the 1800 kg/h cold fluid at 26.25oC

References

MASTER BI, CHUNANGAD KS, BOXMA AJ, KRAL D, STEHLIK P. Most Frequently Used Heat Exchangers from Pioneering Research to Worldwide Applications Most Frequently Used Heat Exchangers from Pioneering Research n.d.:37–41. https://doi.org/10.1080/01457630600671960.

PATEL VK, RAO R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl Therm Eng 2010;30:1417–25. https://doi.org/10.1016/j.applthermaleng.2010.03.001.

BELL KJ. 2003 Max Jacob Memorial Award Lecture Heat Exchanger Design for the Process Industries 2013;126. https://doi.org/10.1115/1.1833366.

GULYANI BB. Estimating Number of Shells in Shell and Tube Heat Exchangers : A New Approach Based on Temperature Cross 2016;122:566–71.

ALIMORADI A. Study of thermal effectiveness and its relation with NTU in shell and helically coiled tube heat exchangers. Case Stud Therm Eng 2017. https://doi.org/10.1016/j.csite.2017.01.003.

BUDIMAN A, SYARIEF A, ISWORO H, et al. Analisis Perpindahan Panas dan Efisiensi Efektif High Pressure Heater (HPH) di PLTU Asam-Asam 2014;03:76–82.

WEN J, YANG H, WANG S, XUE Y, TONG X. Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffle. HEAT MASS Transf 2015;84:990–7. https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.071.

GU X, LUO Y, XIONG X, WANG K, WANG Y. International Journal of Heat and Mass Transfer Numerical and experimental investigation of the heat exchanger with trapezoidal baffle. Int J Heat Mass Transf 2018;127:598–606. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.045.

ALI A, ZAKI S. Case Studies in Thermal Engineering Analysis study of shell and tube heat exchanger for clough company with reselect di ff erent parameters to improve the design. Case Stud Therm Eng 2017;10:455–67. https://doi.org/10.1016/j.csite.2017.10.002.

ABD AA, KAREEM MQ. Author ’ s Accepted Manuscript Performance Analysis of Shell and Tube Heat Exchanger : Parametric Study. Case Stud Therm Eng 2018. https://doi.org/10.1016/j.csite.2018.07.009.

HUSEN A, AKBAR TMI, CHOLIS N. Analisis pengaruh kecepatan aliran fluida dingin terhadap efektivitas shell and tube heat exchanger 2020;16:1–10.

SOPURTA A, SIREGAR P. Perancangan Sistem Simulasi HYSYS & Iintegrasi dengan Programmable Logic Controller - Human Machine Interface : Studi Kasus pada Plant Kolom Distilasi Etanol-Air 2014;6:1–9.

MAAKOUL A EL, LAKNIZI A, SAADEDDINE S, METOUI M EL, ZAITE A, MEZIANE M, et al. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles. Appl Therm Eng 2016. https://doi.org/10.1016/j.applthermaleng.2016.08.067.

YOU Y, FAN A, HUANG S, LIU W. Numerical modeling and experimental validation of heat transfer and flow resistance on the shell side of a shell-and-tube heat exchanger with flower baffles. Int J Heat Mass Transf 2012;55:7561–9. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.058.

SHRIKANT AA, SIVAKUMAR R, ANANTHARAMAN N, VIVEKENANDAN M. CFD simulation study of shell and tube heat exchangers with different baffle segment configurations. Appl Therm Eng 2016. https://doi.org/10.1016/j.applthermaleng.2016.08.013.

HE L, LI P, LI P. Numerical investigation on double tube-pass shell-and-tube heat exchangers with different baffle configurations 2018. https://doi.org/10.1016/j.applthermaleng.2018.07.098.

CHEMMANGATTUVALAPPIL N, CHONG S. Basics of Process Simulation With Aspen HYSYS. Elsevier Inc.; 2005. https://doi.org/10.1016/B978-0-12-803782-9.00011-X.

SHANAHAN R, CHALIM A. Studi Literatur Tentang Efektivitas Alat Penukar Panas Shell And Tube 1-1 Sistem Fluida Gliserin – 2020;6:164–70.

Downloads

Published

2022-12-31

Issue

Section

Articles