THE EFFECT OF INFILL PATTERN AND DENSITY PARAMETERS ON TENSILE STRENGTH OF POLYMER MATERIALS IN 3D PRINTING
DOI:
https://doi.org/10.21776/jrm.v14i3.1005Keywords:
3D Printing, Tensile Strength, ASTM D638, Infill Pattern, PLAAbstract
One of the references for selecting materials in designing a machine component is its mechanical property which is tensile strength. However, the current tensile strength from the materials used in 3D printing products has not been standardized due to many parameters in the design and process that affect them. The selection of correct design and process parameters may result in the proper mechanical properties and minimize the time and amount of materials used during the printing process. The parameters expected to affect the mechanical properties are density and infill pattern. This study was conducted to observe how far the effect of them on the mechanical properties of 3D printing product's tensile strength. The specimen standard of tensile strength used was ASTM D638, while the tested infill pattern was Grid, Triangles, and Tri-Hexagon patterns, with the percentage of total infill density of 20%, 40%, and 60%. PLA (Polylactic Acid) was chosen as the material used in this study. The 3D print machine operated was 3D Print MakerGear M2 with the tensile testing machine of HTE Hounsfield. The results of this study concluded that the percentage of infill density 20%, 40%, and 60% with different infill patterns had different tensile strengths. The specimen with a Tri-Hexagon infill pattern and 60% density had the biggest tensile strength value, followed by the Triangles infill pattern and the smallest one was the Grid pattern with 20% density.
References
S. Cahyati, Syaifudin, and Achdianto, “A prototyping of additive manufacturing cell in cyber physical system for maintenance 4.0 preparation,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 575–584, 2019.
S. Cahyati, D. P. B. Aji, and D. Suherman, “Design and process plan of hydroforming casing patch using virtual manufacturing method,” AIP Conf. Proc., vol. 2227, no. May, 2020, doi: 10.1063/5.0001054.
Hendri and S. Cahyati, “Usulan penerapan Industri 4 . 0 untuk rantai pasok dan logistik cerdas di perusahaan injection moulding,” vol. 13, no. 2, pp. 223–231, 2021.
S. Cahyati, B. Satriawan, J. Teknik, M. Fakultas, T. Industri, and U. Trisakti, “Ketelitian Dimensi Produk Hasil Proses Modifikasi Mesin Fdm Dual Extruder,” Semin. Nas. Pakar ke 2, pp. 1–7, 2019.
Achdianto, S. Cahyati, Triyono, and Saifudin, “Integrated CAD customization system for fused deposition models in additive manufacture with 3D printing machine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 694, no. 1, 2019, doi: 10.1088/1757-899X/694/1/012008.
L. Yang et al., Electron Beam Technology. 2017.
A. A. Konta, M. Garcia-Pina, and D. R. Serrano, “Personalised 3D printed medicines: Which techniques and polymers are more successful?,” Bioengineering, vol. 4, no. 4, 2017, doi: 10.3390/bioengineering4040079.
K. Deshmukh, A. Muzaffar, T. Kovarik, T. Krenek, M. B. Ahamed, and S. K. K. Pasha, “Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospects of future research,” in 3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges, 2019, pp. 527–560.
R. Gunawan, “Pengaruh Densitas Isi terhadap Ketelitian Dimensi pada Produk Mesin 3D Printing,” Mesin, vol. 11, no. 1, pp. 15–19, 2020, doi: 10.25105/ms.v11i1.7438.
M. Sljivic, A. Pavlovic, M. Kraisnik, and J. Ilic, “Comparing the accuracy of 3D slicer software in printed enduse parts,” IOP Conf. Ser. Mater. Sci. Eng., vol. 659, no. 1, 2019, doi: 10.1088/1757-899X/659/1/012082.
H. K. Dave, N. H. Patadiya, A. R. Prajapati, and S. R. Rajpurohit, “Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 0, no. 0, pp. 1–17, 2019, doi: 10.1177/0954406219856383.
J. Suteja, “Effect of Infill Pattern, Infill Density, and Infill Angle on the Printing Time and Filament Length of 3D Printing,” J. Rekayasa Mesin, vol. 12, no. 1, p. 145, 2021, doi: 10.21776/ub.jrm.2021.012.01.16.
S. Lubis, S. Djamil, and Y. Yolanda, “Pengaruh Orientasi Objek Pada Proses 3D Printing Bahan Polymer Pla Dan Abs Terhadap Kekuatan Tarik Dan Ketelitian Dimensi Produk,” Sinergi, vol. 20, no. 1, p. 27, 2016, doi: 10.22441/sinergi.2016.1.005.
D. Yadav, D. Chhabra, R. K. Gupta, A. Phogat, and A. Ahlawat, “Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1592–1604, 2020, doi: 10.1016/j.matpr.2019.11.227.
Y. Y. Tanoto, J. Anggono, W. Budiman, and K. V. Philbert, “Strength and Dimension Accuracy in Fused Deposition Modeling : A Comparative Study on Parts Making Using ABS and PLA Polymers,” J. Rekayasa Mesin, vol. 11, no. 1, pp. 69–76, 2020, doi: 10.21776/ub.jrm.2020.011.01.8.
N. Markiz, E. Horvath, and P. Ficzere, “Influence of printing direction on 3D printed ABS specimens,” Prod. Eng. Arch., vol. 26, no. 3, pp. 127–130, 2020, doi: 10.30657/pea.2020.26.24.
Z. S. Suzen, “Pengaruh Tipe Infill dan Temperatur Nozzle terhadap Kekuatan Tarik Produk 3D Printing Filamen Pla+ Esun,” Manutech J. Teknol. Manufaktur, vol. 12, no. 02, pp. 73–80, 2020.
Z. Abdullah et al., “The effect of layer thickness and raster angles on tensile strength and flexural strength for fused deposition modeling (FDM) parts,” J. Adv. Manuf. Technol., vol. 12, no. Specialissue4, pp. 147–158, 2018.
J. Horvath, “Mastering 3D Printing. Modeling, printing and prototyping with reprap-style 3D printers.,” p. 196, 2014, [Online]. Available: http://www.globalview.gr/2016/06/30/62949/.
ASTM D638-14, “Standard Practice for Preparation of Metallographic Specimens,” ASTM Int., vol. 82, no. C, pp. 1–15, 2016, doi: 10.1520/D0638-14.1.
B. Banjanin et al., “Consistency analysis of mechanical properties of elements produced by FDM additive manufacturing technology,” Rev. Mater., vol. 23, no. 4, 2018, doi: 10.1590/s1517-707620180004.0584.
A. Setiawan, “Pengaruh Parameter Proses Ekstrusi 3D Printer Terhadap Sifat Mekanis Cetak Komponen Berbahan Filament PLA (Poly Lactide Acid),” J. Tek. STTKD. ISSN 2460-1608, vol. 4, no. 2, pp. 20–27, 2017.
M. Fernandez-Vicente, W. Calle, S. Ferrandiz, and A. Conejero, “Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing,” 3D Print. Addit. Manuf., vol. 3, no. 3, pp. 183–192, 2016, doi: 10.1089/3dp.2015.0036.
M. R. Derise and A. Zulkharnain, “Effect of infill pattern and density on tensile properties of 3d printed polylactic acid parts via fused deposition modeling (FDM),” Int. J. Mech. Mechatronics Eng., vol. 20, no. 2, pp. 54–63, 2020.
V. S. Jatti, S. V. Jatti, A. P. Patel, and V. S. Jatti, “A study on effect of fused deposition modeling process parameters on mechanical properties,” Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 689–693, 2019.
M. Eryildiz, “The Effects of Infill Patterns on The Mechanical Properties og 3D Printed PLA Parts Fabricated by FDM,” vol. 7, no. 1, pp. 1–8, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Sally Cahyati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.