Pengaruh Dimensi terhadap Volume Gas HHO dan Daya Listrik pada Proses Elektrolisis

Dedy Pradigdo, Sudjito Soeparman, Agung Sugeng Widodo

Abstract


The electrode area have an effect on HHO gas production volume, this phenomena influenced by electric power absorbed from the energy source to the electrode. It is necessary to examine how much the influences on process of the water electrolysis. In this research the effect of the electrode total area on the electrolysis process analyzed to determine the volume of HHO gas and electric power absorbed. The experimental method by testing the extent of several electrodes without the connection and calculating the entire surface on the electrode. The electric power is absorbed among other L1 =  6.413 mm2 : 5,2 ml : 0,774 watt, L2 = 10.028 : 28 mm2 : 7 ml : 0,9030 watt,  L3 = 14.328 mm2 : 15 ml : 2,451 watt and L4 = 14.3608 mm2 : 20 ml : 6,192 watt. In this research, the highest result on the electrode having L4: 14.360,8 mm2 = 6,192-watt area. This result influenced by the surface area reacting with water at the anode and cathode of the 12 Volt 70 AH battery and the capacity of the electrolysis generator.


Keywords


Electrode Area; Electrolysis; HHO; Electric Power

Full Text:

PDF

References


Andewi, N.M.A.Y., Hadi, W., 2011, Produksi gas hidrogen melalui proses elektrolisis air sebagai sumber energi, Institut Tekhnologi Sepuluh November, Surabaya.

Attila Gollei, P € eter G orbe, Attila Magyar., Measurement based modeling and simulation of hydrogen generation cell in complex domestic renewable energy systems, Department of Electrical Engineering and Information Systems, Faculty of Information Technology, University of Pannonia, Egyetem Street 10, Veszprem, H- 8200, Hungary.

A.Syaiful, dkk., 2015, Pengaruh Variasi Lapisan Pelat Sejajar pada Laju Produksi HHO dari Generator Oxyhydrogen Berbasis Sel Elektrolis, Jurnal fisika dan aplikasinya volume 11, nomor 1 Januari 2015. Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya.

B.N. Lukyanov, D.V. Andreev, V.N. Parmon Boreskov, Catalytic reactors with hydrogen membrane separation Institute of Catalysis, Pr. Akad. Lavrentieva 5, Novosibirsk 630090, Russia.

E.V. Chatzidouros, V.J. Papazoglou, T.E. Tsiourva, D.I. Pantelis, Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging, Shipbuilding Technology Laboratory, School of Naval Architecture and Marine Engineering, National Technical University of Athens, Greece. 4.

Sastrohamidjojo, H., 2005, Kimia Dasar, edisi ke-2, Gadjah Mada University Press, Yogyakarta.

Jack R. Ambler dkk, 2011, Evaluation of stainless steel cathodes and a bicarbonate bufferfor hydrogen production in microbial electrolysis cells using a new method for measuring gas production. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802.

Marlina, E., dkk., 2013, Produksi Brown’s gas hasil elektrolisis H2O dengan katalis NaHCO3, Jurnal Rekayasa Mesin, Universitas Brawijaya, Malang.

M. Reytier, S., dkk. 2015, Stack performances in high temperature steam electrolysis and co-electrolysis. CEA, LITEN, 17 rue des Martyrs, F-38054 Grenoble, France.

Natalia R. Kudinova, dkk. 2016 Determining the bound energies of dissolved hydrogen on thebasis of a multichannel diffusion model in a solid. Institute of Problems of Mechanical Engineering RAS, 61 Bolshoi Pr. V.O., St. Petersburg 199178, Russian Federationb Peter the Great St. Petersburg Polytechnic University.

Selembo, P.A., dkk., 2009, The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells, Journal of Power Sources, volume 190, 271-278.

Perry’s, R.H., Green, D.W., 1997, Chemical Engineers Handbook edition 7, McGraw-Hill.

Sopandi, I., dkk., 2015, Studi Ketebalan Elektroda Pada Produksi Gas HHO (Hidrogen Hidrogen Oksigen) Oleh Generator HHo Tipe Basah Dengan Katalis NaHCO3 (Natrium Bikarbonat), Jurnal Ilmiah dan Penerapan Keteknikan Pertanian, Unsyiah.

Rebecca L. King, Gerardine G. Botte , 2016, Hydrogen production via urea electrolysis using a gel electrolyte, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering, 165 Stocker Center, Ohio University, Athens, OH 45701, USA.

Tomohiko Imamura dkk, 2009, Control of the ignition possibility of hydrogen by electrostatic discharge at a ventilation duct outlet, Research Core for Explosion Safety, Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

Tong-Le Liu, dkk,. 2016, Evaluation of polarization and hydrogen production efficiency of solid oxide electrolysis stack with La0.6Sr0.4Co0.2Fe0.8O3-δ Ce0.9Gd0.1O1.95 oxygen electrode, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.

Wahyono, 2016. Pembuatan alat produksi gas hidrogen dan oksigen tipe wett cell dengan variasi luas penampang, Jurnal Polines.

Yimin Zhang, Matthew D. Merrill, Bruce E. Logan, The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells, Department of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA 16802, USA.

Yousif M. Hamad, dkk., 2014, A design for hydrogen production and dispensing for northeastern United States, along with its infrastructural development timeline, Department of Mechanical and Aerospace Engineering, Missouri University of Science andTechnology Rolla, MO, USA.




DOI: http://dx.doi.org/10.21776/ub.jrm.2018.009.02.4

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.